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INTRODUCTION:  Nature of the Problem, Background, Purpose of the
Present Work, and Methods of Approach

This research is aimed at elucidating why breast cancer cells become resistant
to antiestrogen treatment. Antiestrogens are used widely in the treatment of breast
cancer, but development of resistance and patient relapse is a significant problem.
The antiestrogen tamoxifen is the most widely prescribed drug for breast cancer
treatment and it is usually considered the treatment of choice for the endocrine
therapy of breast cancer because of its effectiveness, ease of use, and minimal side
effects. It may also be of benefit in preventing the development of breast cancer in
women at high risk for the disease, a hypothesis being currently tested in a major
NCI-funded clinical trial. Although almost one-half of breast cancer patients benefit
substantially from treatment with tamoxifen, many of these women eventually
suffer relapse because some of the breast cancer cells have become resistant to
tamoxifen. This resistance to tamoxifen presents a major impediment to the long-
term effectiveness of such treatments. Our research is aimed at understanding and
elucidating why breast cancer cells become resistant to antiestrogen treatment. In
these studies we are using several model human breast cancer cell systems that
differ in their sensitivity and resistance to tamoxifen, and we are investigating a
novel mechanism and hypothesis that may explain antiestrogen resistance, namely
the stimulation of adenylate cyclase by antiestrogens with increases in intracellular
cAMP, augmentation of antiestrogen agonist character, and reduced effectiveness of
antiestrogens as estrogen antagonists.

Clinical experience has shown that hormonal resistance is often reversible,
suggesting a cellular adaptation mechanism, rather than a genetic alteration in
many breast cancers. This also seems to be the case in the tamoxifen-resistant
human breast cancer cells (denoted MCF/TOT) we have developed (M. Herman and
B. Katzenellenbogen, publication #8), and which are described in the section below
entitled "Body". For example, patients that become resistant to tamoxifen often
respond immediately to treatments with high dose estrogen or return to a state of
tamoxifen responsiveness after a period of alternative therapy. Therefore, any
mechanism that would explain tamoxifen resistance in these patients would have
to involve mechanisms that would be reversible or adaptational, in contrast to
other mechanisms for tamoxifen resistance that might involve mutations in the
estrogen receptor or other critical transcription factor or growth factor genes.
Therefore, we have been further investigating our observations regarding a two-way
link between estrogen receptors and cAMP which would be consistent with a
reversible and adaptational mechanism of antiestrogen resistance. Our observations
that estrogens as well as antiestrogens are able to increase cAMP in breast cancer
cells, and that cAMP increases the stimulatory effects of tamoxifen-like
antiestrogens, could result in a feed-forward cascade that could result in the total
compromising of the tumor growth suppressing activities of antiestrogens.
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It is noteworthy the cAMP levels are significantly higher in breast tumors
than in normal breast tissue and that elevated concentrations of cAMP binding
proteins are associated with early disease recurrence and poor survival rates.
Interestingly, as well, cCAMP is both a mitogenic and a morphogenic factor in
mammary cells and it has been shown to enhance the mitogenic activity of several
growth factors. Therefore, our overall goal in these studies is to develop an
understanding of the basis for the development of tamoxifen resistance in breast
cancer. Understanding the basis for the development of tamoxifen resistance would
be an important first step in developing more effective strategies for the successful
~long-term treatment of hormone-responsive breast cancer. In addition, this
research should allow us to develop more effective therapies for antiestrogen-
sensitive and antiestrogen-resistant breast cancers and should enable the use of
antiestrogens to be approached most sensibly and effectively in the clinic.

BODY: Experimental Methods Used, Results Obtained and the Relationship
of Our Results to the Goals of the Research

In this past year, we have made good progress on the Specific Aims. As
detailed below, we have completed Statement of Work Tasks 1 and 2, have begun
on validation of some parameters related to Task 3, and we have already made a few
mutant estrogen receptors that we plan to study in Task 4 to identify sites of estrogen
receptor phosphorylation regulated by the cAMP pathway and kinases activated by
cAMP elevation in breast cancer cells.

Since we have shown that estrogens and antiestrogens increase cAMP within
breast cancer cells (Aronica, S. M., Kraus, W. L., and Katzenellenbogen B. S., Proc.
Natl. Acad. Sci. USA 91: 8517-8521, 1994), and cAMP alters the agonist/antagonist
balance of tamoxifen-like antiestrogens (Fujimoto, N., and Katzenellenbogen, B. S.
Molec. Endocrinol. 8: 296-304, 1994), the increase in cAMP may result in a reduction
in the tumor growth-suppressing activity of tamoxifen, a change that may underlie
the development of tamoxifen resistance in some breast cancer patients. To
examine this hypothesis in detail, we have isolated and characterized antiestrogen-
resistant MCE-7 human breast cancer sublines that we have selected and cloned, and
we have determined their responses to antiestrogens and cAMP in terms of cell
proliferation and growth factor production, and the responses of other genes
normally estrogen regulated, such as progesterone receptor and pS2 (Herman and
Katzenellenbogen, publication #8, and Nicholson et al, publication #1 and
Nicholson et al, publication #4, and Ince et al, publication #3, and Katzenellenbogen
et al, publication #9). These studies have directly addressed the Statement of Work
Task 1, points a, b, c and d.

For these studies, we cultured MCF-7 breast cancer cells long-term (longer
than 1 year) in the presence of the antiestrogen trans-hydroxy-tamoxifen (TOT) to
generate a subline refractory to the growth-suppressive effects of TOT. This subline
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(designated MCF/TOT) showed growth stimulation, rather than inhibition, with
TOT and diminished growth stimulation with estradiol (E2), yet remained as
sensitive as the parental cells to growth suppression by another antiestrogen, ICI
164,384. Estrogen receptor (ER) levels were maintained at 40% that in parent MCF-7
cells, but MCE/TOT cells failed to show an increase in progesterone receptor content
in response to E2 or TOT treatment. In contrast, the MCF/TOT subline behaved like
parental cells in terms of Ep and TOT regulation of ER and pS2 expression and
transactivation of a transiently transfected estrogen-responsive gene construct.
DNA sequencing of the hormone binding domain of the ER from both MCF-7 and
MCF/TOT cells confirmed the presence of wild-type ER and exon 5 and exon 7
deletion splice variants, but showed no point mutations. Compared to the parental
cells, the MCF/TOT subline showed reduced sensitivity to the growth-suppressive

effects of retinoic acid and complete resistance to exogenous TGF-f1. The altered

growth responsiveness of MCF/TOT cells to TOT and TGF-B1 was partially to fully
reversible following TOT withdrawal for 16 weeks. Our findings underscore the fact
that antiestrogen resistance is response-specific; that loss of growth suppression by
TOT appears to be due to the acquisition of weak growth stimulation; and that
resistance to TOT does not mean global resistance to other more pure antiestrogens
such as ICI 164,384, implying that these antiestrogens must act by somewhat
different mechanisms. The association of reduced retinoic acid responsiveness and

insensitivity to exogenous TGF-B with antiestrogen growth-resistance in these cells
supports the increasing evidence for interrelationships among cell regulatory
pathways utilized by these three growth-suppressive agents in breast cancer cells. In
addition, our findings indicate that one mechanism of antiestrogen resistance, as
seen in MCF/TOT cells, may involve alterations in growth factor and other
hormonal pathways that affect the ER response pathway.

Since these MCF/TOT cells, resistant to the growth suppressive effects of

antiestrogens or TGF-B continue to express TGF-B type I and II receptors of the
correct size and in amounts equal to those observed in the parental cells, their lack

of inhibition by the high levels of TGF-1 either being made by the cells or added by
us to their culture media suggest a lesion after receptor binding, i.e. at some point in
the TGF-p intracellular signalling pathway. We have also used several MCE-7 cell
clones with altered antiestrogen sensitivity to investigate the response to cAMP and
antiestrogen as monitored by proliferation rates, colony formation ability and
changes in regulation of several growth-related genes (TGF-8, TGF-a, pS2, and TGF-
0./EGF receptor), (Publications # 1, 4, and 8). In addition, we have studied the
regulation of the progesterone receptor in tamoxifen- and estrogen-sensitive and
tamoxifen- and estrogen-resistant breast cancer cells, since the progesterone receptor
is often used as an end-point or marker of hormone sensitivity and responsiveness.
By monitoring progesterone receptor content in the cells, using several different
progesterone receptor-specific antibodies, we have observed that the progesterone
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receptor B/ A ratio is higher with trans-hydroxytamoxifen versus estrogen treatment
of cells ( a variety of different estrogens were tested) and progesterone receptors were
further increased by treatment of cells with 8-Br-cAMP and trans-hydroxytamoxifen.

We have monitored basal and stimulated levels of cAMP in parental MCEF-7
cells and in our MCF/TOT (tamoxifen stimulated) MCF-7 cells and in estrogen
receptor negative MDA-MB-231 breast cancer cells which are unresponsive to
estrogen and antiestrogen. We have found that the antiestrogen-stimulated MCF-7
cells and the antiestrogen-unresponsive 231 cells showed 3-5 times higher
intracellular cAMP levels than were observed in the parental MCF-7 cells. We
observed no stimulation of cAMP levels by estrogen or antiestrogen treatment of
231 cells, while we observed only a 1.5-fold change in cAMP in the MCF/TOT cells
and we observed a 3-4 fold increase in cAMP in the parental MCF-7 cells. Thus,
hormone resistant and antiestrogen stimulated cells interestingly had elevated basal
levels of cCAMP, an observation we also made in breast cancer cells studied under
Task 2, that were kindly provided by Dr. Fran Kern of the Lombardi Cancer Research
Center at Georgetown University in Washington D. C.

Under Task 2, we have worked towards the identification of endogenous and
exogenous agents and factors that result in elevation of cAMP levels in breast cancer
cells. We have investigated the correlation between antiestrogen growth
responsiveness/resistance and cellular cAMP levels and adenylate cyclase activities.
Using 5 breast cancer cells lines (MCF-7 wild type versus MCE-7 tamoxifen
stimulated, and 3 MCF-7 cell lines that are resistant to antiestrogen (MCF-7-v-Ha-ras,
MCE-7-FGF1 and MCEF-7-FGF4, which stably overexpress ras, FGEF-1, or FGF-4,
respectively, kindly provided to us by Dr. Fran Kern, we have observed that the
overexpressing ras and FGF cells show basal cAMP levels 2.5-3.5 x higher than wild
type MCF-7 cells. Values obtained were as follows (mean + S. D. : wild type MCF-7
cells, 35 + 10; MCEF-7 ras, 121 + 9; MCF-7 FGF-1, 86 *+ 2; MCF-7 FGF-4, 103 £ 9.
Interestingly, these latter three cell types, which proliferate rapidly and do not have
their rate of proliferation influenced by estrogen or antiestrogen, likewise did not
have their intracellular cAMP levels influenced by estrogen or antiestrogen
treatment. Thus, elevated levels of cellular cAMP appear to correlate with altered
growth responsiveness/resistance and with an estrogen and antiestrogen growth-
autonomous state.

We also asked whether estradiol would affect intracellular cAMP in human
endometrial cancer Ishikawa cells. These cells contain estrogen receptor and were of
interest because tamoxifen is known to be quite agonistic (i.e. stimulatory) in
endometrial cells, and in fact, a major concern in the Tamoxifen Prevention Trial in
women has involved stimulation of the uterus by tamoxifen. We observed in these
cells, basal and estrogen-stimulated and isobutyl methyl xanthine (IBMX)/cholera
toxin-stimulated levels of cAMP similar in magnitude to those observed in the
MCEF-7 wild type breast cancer cells, namely an approximately 20-fold increase in
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response to IBMX and cholera toxin and an approximately 3-6 fold increase in
response to estradiol. Thus, these uterine cells did not show a response to estrogen
or to tamoxifen substantially different in magnitude from that observed with MCF-7
breast cancer cells.

Since antiestrogens such as tamoxifen can have partial estrogen-like activity
in some cell types, and studies have implied that this stimulation is dependent on
the amino-terminal activation function-1-containing region of the receptor, we
studied this region of the receptor in detail (McInerney, EM and Katzenellenbogen
BS, publication #13). In our investigations on the A/B domain of the estrogen
receptor and its role in the transcriptional activity of the estrogen receptor elicited by
estrogens and some antiestrogens, we have found that different regions within this
domain are required for transcriptional stimulation by estrogen versus antiestrogen.
We demonstrated that a specific 24-amino acid region of activation function-1 of the
human estrogen receptor is necessary for agonism by trans-hydroxytamoxifen and
other partial agonist/antagonist antiestrogens, but is not required for estradiol-
dependent transactivation. As a consequence, the activity of estradiol and the
estrogen agonist/antagonist character of trans-hydroxytamoxifen depended
markedly, but not always concordantly, on the sequences present within the A/B
domain in the receptor. Our studies show that hormone-dependent transcription
utilizes a broad range of sequences within the amino terminal A/B domain and
suggest that differences in the agonist/antagonist character of antiestrogens observed
in cells could be due to altered levels of specific factors that interact with these
regions of the receptor protein.

During our work this past year, a publication appeared in which a group of
Italian researchers reported that sex steroid binding globulin (S5BG) was necessary
in the stimulation of cAMP by estrogen in breast cancer cells (F. Fissore et al.,
Steroids 59:661-667, 1994). Because we felt it was essential for us to determine if this
was important in our work related to Task 1c and 1d, and in the identification of
membrane sites (related to Task 3), we purchased SSBG from two different sources,
namely Calbiochem and Scripps Laboratories, both SSBG preparations in highly
purified form. We followed the Fissore protocol as closely as possible and also did
several variations. Thus, we utilized 1nM and 3nM SSBG concentrations with cells
in serum-free medium, and in 0.5% and 5% serum, and with cells in serum-free
medium containing insulin, transferin and selenium. We also tested several
different concentrations of estradiol, namely 10-8, 10- and 10-10 M. In no case, did
we observe a stimulatory (nor a suppressive) effect of SSBG on the cAMP response
to hormone. Thus, despite several months of experiments, we were not able to
confirm that sex steroid binding globulin was necessary for the stimulation of cAMP
by hormone in our breast cancer cells. We therefore have ruled this out as a likely
important factor in our studies in Tasks 1 and 3.
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We have begun some work on the studies under Task 4, although many
further studies are necessary and will continue over the next two years. The
estrogen receptor contains two potential cAMP-dependent protein kinase sites at
serine 236 in the DNA binding domain and serine 302 at the very start of the
hormone binding domain. We therefore have changed these serines to alanines by
site-directed oligonucleotide mutagenesis of the estrogen receptor cDNA. The
change from serine to alanine would thus eliminate the possibility of
phosphorylation at these sites. We will soon be testing the response of these
mutants to cAMP and estrogen and antiestrogen in order to identify sites of
phosphorylation that may be associated with the alteration in tamoxifen agonist
character in the presence of cAMP.

Response to Technical Issue in Year 1 Report

(In our Year 1 Report, and in several published papers, we have observed that
cAMP enhances the stimulatory activity of tamoxifen-like antiestrogens, but not the
activity of ICI 164,384-type antiestrogens. The question was raised by reviewers of
our Year 1 Report under "technical issues", whether these results might reflect
differences in purity between the two drugs rather than true differences in the
mechanisms of actions of these two different categories of antiestrogens. Our work
and the work of others indicates that the tamoxifen-like antiestrogens and the ICI
164,384-type-antiestrogens work through the estrogen receptor of breast cancer cells
but via quite different mechanisms. While tamoxifen-type antiestrogens are able to
activate the activation function-1 of the receptor, the ICI-type antiestrogens fail to
activate activation function-1 and instead accelerate degradation of the estrogen
receptor reducing receptor content in the cells, and therefore preventing response to
antiestrogen. Thus, the ability of ICI 164,384-like antiestrogens to reverse the
stimulatory effect of tamoxifen-like antiestrogens, and the inability of estrogen
receptor-ICI antiestrogen complexes to be stimulated by elevated intracellular cAMP,
we believe, reflects a true difference in the mechanism of action of these compounds
and does not relate at all to purity of the compounds, which are both very pure as
we use them.) '

CONCLUSIONS: Implications of Our Research Findings,and Future Work
to be Undertaken

The results of our studies indicate that agents or factors that elevate CAMP in
breast cancer cells should reduce the effectiveness of tamoxifen-like antiestrogens
used in hormonal therapy of breast cancer and may lead to antiestrogen resistance.
In addition, we find that antiestrogens themselves can increase cAMP levels,
rendering the antiestrogens less potent antagonists of estrogen action and more
potent stimulators of estrogen-induced effects, resulting in compromising of the
tumor growth suppressing activities of antiestrogens. Our observations in this past
year of the grant which indicate that cells resistant to the growth suppressive affects
of antiestrogen (including our MCF/TOT cells or cells overexpressing ras or FGF-1
or FGF-4) contain substantially elevated levels of intracellular cAMP, are consistent
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with the hypothesis that elevated cAMP levels may compromise the growth
suppressive activities of antiestrogens, rendering the cells insensitive to these
normally growth suppressive compounds. In contrast to mechanisms for tamoxifen
resistance that involve mutations in the estrogen receptor or other critical growth
regulatory genes, which would not be reversible, our proposed mechanism
involving a compromising of tamoxifen effectiveness as an antiestrogen in the
presence of elevated levels of intracellular cAMP, would be a progressive,
adaptational response, which would be reversible upon cessation of tamoxifen
therapy. Indeed, our findings in Herman and Katzenellenbogen, publication #8,
and also clinical experience support a mechanism of this type in that patients who
become resistant to tamoxifen often return to a state of tamoxifen responsiveness
after a period of alternate therapy (during which time cAMP levels in tumor cells
may drop such that newly administered tamoxifen would again be effective as a
growth suppressive agent). In addition, our data could account for the observation
that hormonal resistance in model mammary tumor systems develops much more
slowly to ICI 164,384 than to tamoxifen in that the agonistic character of ICI 164,384 is
not augmented by cAMP. Therefore, ICI 164,384-like antiestrogens may prove to be
more long-term effective antiestrogens compared with tamoxifen.

In the next year of this grant, we will focus primarily on Tasks 3 and 4. We
will identify and characterize the membrane binding site through which estrogen
and antiestrogen stimulate adenylate cyclase in breast cancer cells, and we will
determine if this a new binding protein or an estrogen receptor-like protein. We
will also work toward determining the mechanism by which increased cAMP alters
the biocharacter (agonist/antagonist activity) of antiestrogens. We will determine
the effect of tamoxifen, ICI 164,384, and estrogen alone and in the presence of
elevated levels of cAMP, on phosphorylation of the estrogen receptor, using tryptic
phosphopeptide analysis and site-directed mutagenesis to identify sites of
phosphorylation that may be associated with the alteration in tamoxifen agonist
character. Through these mutational analyses we will determine which
phosphorylation sites on the receptor are associated with changes in tamoxifen
agonist character in the presence of cAMP and we will determine whether there are
differences in receptor phosphorylation in parental antiestrogen-responsive versus
in antiestrogen-resistant MCF-7 breast cancer sublines. These investigations should
provide insight into the nature of antiestrogen resistance and the role of cAMP
modulation of estrogen and antiestrogen action in hormonal resistance. We hope
through our findings to provide an understanding of tamoxifen resistance at the
molecular level, and thus to point towards new directions for more effective
implementation of antiestrogen treatments in breast cancer patients that may prove
to be more long-term and effective compared to tamoxifen.
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Observations arising from the use of
pure antioestrogens on
oestrogen-responsive (MCF-7) and
oestrogen growth-independent (K3)
human breast cancer cells

by R I Nicholson, J M W Gee, A B Francis, D L Manning,

A E Wakeling and B S Katzenellenbogen

INTRODUCTION

During the last 7 years the Breast Cancer Group
within the Tenovus Cancer Research Centre has
maintained an involvement in the use of pure
antioestrogens in two important areas of breast can-
cer research. First, their development as clinical
agents, where we hoped to induce total oestrogen
deprivation and thereby improve the effectiveness of
first-line endocrine therapy (Nicholson et al. 1992,
Nicholson 1993, Nicholson et al. 19934, DeFriend et
al. 1994, Nicholson et al. 1994¢). Second, as phar-
macological probes to investigate the cellular and
molecular actions of oestrogens and tamoxifen
(Nicholson et al. 1988, Weatherill ez al. 1988, Wilson
et al. 1990). Implicit in each of these areas of
research are questions associated with the impact
which pure antioestrogens might have on the therapy
of endocrine-resistant states and whether resistance
develops as a consequence of incomplete oestrogen
withdrawal, with tumour cells more efficiently utilis-
ing either a reduced oestrogenic pool or the agonistic
activity of an antioestrogen, or whether the resistant
cells have completely circumvented the need for oes-
trogen receptor (ER)-mediated growth and hence
sensitivity to the antitumour properties of pure
antioestrogens (Nicholson et al. 1994¢).

On this basis, in the current article we seek to
describe a number of the properties exhibited by pure
antioestrogens  in  oestrogen-responsive MCEF-7
human breast cancer cells (Nicholson et al. 1990,

Nicholson et al. 1995) and in the oestroger
growth-independent variant K3 (Katzenellenbogen et
al. 1987, Clarke et al. 1989, Cho et al. 1991, Reese
& Katzenellenbogen 1992) of this tumour cell line.
Limited data will also be presented on the growth-in~-
hibitory properties of 4-(3-methylanilino)quinazoline
(aniloquinazoline), a tyrosine kinase inhibitor which
shows specificity for epidermal growth facter
(EGF)-receptor signalling (Wakeling et al. 1994).
The data presented are consistent with ER-mediated
growth being important not only in MCF-7 cells, but
also in their oestrogen-resistant variant, with trans-
forming growth factor o (TGFa) possibly playing a.
supportive growth-regulatory role.

COMPARATIVE GROWTH EFFECTS OF
OESTRADIOL AND ANTIOESTROGENS
ON WILD-TYPE AND K3 MCF-7 CELLS

K3 cells were originally isolated by the exposure
of MCF-7 human breast cancer cells to culture
conditions low in oestrogenic substances (Katzenel-
lenbogen et al. 1987). Thus, by growing MCF-7 cells
in phenol red-free media and 5% dextran-coated
charcoal-treated (DCC-stripped) foetal calf serum
(FCS) for prolonged periods, a stable cell variant
(K3) was obtained which showed a markedly
increased basal rate of proliferation where added oes-
trogen was unable to increase this rate of
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Figure 1 Characterisation of the growth of K3 and Wt MCF-7 cells in monolayer

culture. (a and b) The cells were grown in multiwell dishes in white RPMI tissue cul-

ture medium with 5% DCC-stripped FCS (medium A); without additives (minus
E2), and medium A containing 107°M oestradiol (E2), 107’M 4-hydroxytamoxifen
(4-OHT), and 10""M ICT 182780 (164/182) for up to 14 days. (c and d) The cells

were grown in medium A containing 10"M ICI 182780 for 8 days prior to the addi-

tion of various doses of oestradiol (182+E2). These cultures were harvested on day

14 after the addition of oestradiol. Cell numbers were assessed by the use of a Coul-

ter counter and are the mean of 3 replicate cultures counted in triplicate. *P v
182<0.05: statistical analysis performed using a Mann-Whitney U test.
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proliferation further. These results are essentially
duplicated in Figure 1 and contrast with the stimula-
tory effect of added oestradiol (10-M) on the
growth of our Wt-MCF-7 cells in media lacking
endogenous oestrogens.

Despite their apparent oestrogen growth-inde-
pendence, early studies established that the growth of
K3 cells could be inhibited by 10~’M 4-hydroxy-
tamoxifen (Katzenellenbogen et al. 1987, Clarke et
al. 1989). This effect is also illustrated in Figure 1a.
In the present study we have used the pure antioes-
trogen ICI 182780 (107"M) (Wakeling et al. 1991) to
establish whether complete oestrogen deprivation
can achieve a greater antitumour effect than can the
use of antioestrogens, like tamoxifen, with partial
oestrogen-like activity (Nicholson et al. 1995). Fig-
ure la shows the growth-inhibitory activity of ICI
182780 exceeding that of 4-hydroxytamoxifen,
allowing at maximum 2 doublings of the initial cell
number. Over several experiments we have estimated
the tumour cell doubling time for ICI 182780-treated
K3 and wild-type (Wt) cells to be in excess of 150h.
This contrasts with 32-35h for oestrogen-treated and
oestrogen-withdrawn K3 cells (Katzenellenbogen et
al. 1987, Clarke et al. 1989) and >80h for 4-hydroxy-
tamoxifen-treated cells (Katzenellenbogen et al.
1987).

Importantly, the improved level of growth inhibi-
tion shown by pure antioestrogens in several breast
tumour cell lines appears specific for ER signalling,
in that their actions are restricted to ER-positive can-
cer cells and they are achieved at molar
concentrations (10~ 10 10‘9) equivalent to the dis-
sociation constant for their binding to ER. Moreover,
the actions of antioestrogens may be reversed by
oestradiol (see refs in Nicholson et al. 1994a). This
property is demonstrated for pure antioestrogens
both in K3 and in Wt cells in Figure 1c and d.
Indeed, ICI 182780 growth-suppressed K3 cells
show an increased sensitivity to oestradiol in com-
parison with wild-type cells, with the effects of
10""M ICT 182780 reversed by 10-"M oestradiol.

THE PARADOX AND A POTENTIAL
SOLUTION

These data represent a paradox both for K3 and for
Wt cells, each of which are capable of growth in the

Endocrine-Related Cancer (1995) 2 (1) 115-12]1

apparent absence of oestradiol (K3>Wt), yet are
growth inhibited by a pure antioestrogen whose per-
ceived mechanism of action is to antagonise the
cellular actions of oestrogens at the ER. Indeed, their
inhibitory actions may be reversed (K3>Wt) by
oestradiol. A potential solution to this paradox arises
from the observation that the ceilular actions of the
ER, in either an occupied (Wakeling et al. 1991, refs
in Nicholson et al. 1994a) or unoccupied (Ignar-
Trowbridge et al. 1992) form, may be potentiated by
the presence of growth factors. ER-induced growth
responses, therefore, may require only limited
amounts of steroid, with differences between K3 and
Wt cells reflecting altered regulation of growth factor
production or cellular sensitivity to their actions.

AN INVOLVEMENT OF TGFa?

As may be seen in Figure 2, when grown in an oes-
trogen-depleted environment K3 cells show a higher
basal expression of the mitogenic growth factor
TGFo than do Wt cells. Furthermore, in K3 cells the
intracellular level of this protein is only poorly
induced by oestradiol compared with a twofold
increase seen in Wt cells. This parallels the lack of
activity of the steroid on K3 growth. In each .
instance, ICI 182780 reduced the basal expression of
TGFa. Importantly, the reduction in TGFc levels in
pure antioestrogen-treated cells accompanies a sub-
stantial fall in their ER content (Fig. 2c and d; Reese
& Katzenellenbogen 1992). This action would mini-
mise the opportunity for cross talk between ER
signalling and TGFa signalling pathways. Interest-
ingly, K3 cells also show an elevated basal
expression of pS2 (Cho et al. 1991), a protein whose
gene promoter contains response elements both for
oestradiol and for TGFa (Nunez et al. 1989). Once
again, the expression of this protein is efficiently
reduced by the presence of the pure antioestrogen
(Nicholson et al. 1995).

Finally, we have examined the effects of
4-(3-methylanilino)quinazoline (ZM163613), a tyro-
sine kinase inhibitor reported to show specificity for
EGF-receptor signalling (Wakeling et al. 1994, Ward
et al. 1994), on K3 and Wt cells in order to determine
whether TGFa is directly involved in growth signal-
ling and oestrogen-regulated gene expression. The
data shown in Figure 3a and b show that the Wt cells
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Figure 2 Immunchistochemical characterisation of K3 and Wt MCF-7 cells. The cells were
cultured on 3-aminopropyltriethoxysilane-coated glass coverslips in medium A containing no
additions (minus E2), 10~"M oestradiol (E2), 10~'M 4-hydroxytamoxifen (4-OHT), and 107'M
ICI 182780 (182) for up to 14 days. TGFc (a and b) and ER (c and d) assays were performed
according to the methods of Nicholson et al. (1991, 1993b) and Walker et al. (1988), respectively.
The results are shown as mean valuesS.D. of 5 replicates from a minimum of 2 coverslips. H
scores were calculated according to the method of Gee et al. (1994).

are strongly growth inhibited by the drug at a con-
centration of 10uM. At this concentration, the cells
show reduced basal progesterone-receptor and pS2
levels whilst maintaining ER and TGFa cellular con-
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centrations (Nicholson et al. 1995). However, an
identical dose of ZM 1636132 is less growth inhibitory
to K3 cells (Fig. 3a) and does not alter oestrogen-
regulated gene expression, although some growth
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CONCILUSIONS

Several conclusions may be arrived at on the basis of
the results presented.

(1) The importance of ER-mediated signalling is
retained in the basal growth responses of oestrogen
growth-independent K3 cells and is in parallel with
observations made on tamoxifen-resistant tumours
which are sensitised to the agonistic activity of the
drug (Osborne et al. 1994).

(2) TGFo signalling may impinge on ER-mediated
growth and circumvent the need for high oestrogen
levels. This response may be exaggerated in K3 cells,
potentially decreasing the cellular sensitivity to
ZM163613. '

(3) Pure antioestrogens antagonise ER-mediated
effects, in Wt and K3 cells, possibly by decreasing
ER and TGFa: levels and thereby reducing cross talk
between these growth-signalling pathways.
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Finally, it is interesting that we have also
observed that a failure of ER-positive advanced
breast cancer to respond to antihormones correlates
with elevated TGF levels (Nicholson er al. 1994b)
and elevated cell-proliferation rates, evidenced by an
increased Ki67 immunostaining (Nicholson et al.
1991, Nicholson et al. 1993b); factors which in K3
cells are associated with acquired oestrogen
growth-independence. If these factors are causative
in the loss of oestrogen growth-responsiveness, then
primary and acquired endocrine resistance may occur
on a similar developmental pathway and be equally
vulnerable to pure antioestrogens. Trials to examine
these possibilities are awaited.
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Antiestrogens: Mechanisms and Actions
in Target Cells

Benita S. Katzenellenbogen,* Monica M. Montano, vPascale Le Goff,
David J. Schodin, W. Lee Kraus, Bhavna Bhardwaj
and Nariaki Fujimoto

Department of Physiology and Biophysics and Department of Cell and Structural Biology, University of Illinois and
Umniversity of Illinois College of Medicine, Urbana, 1L 61801, U.S.A.

Antiestrogens, acting via the estrogen receptor (ER) evoke conformational changes in the ER
and inhibit the effects of estrogens as well as exerting anti-growth factor activities. Although the
binding of estrogens and antiestrogens is mutually competitive, studies with ER mutants indicate
that some of the contact sites of estrogens and antiestrogens are likely different. Some mutations
in the hormone-binding domain of the ER and deletions of C-terminal regions result in ligand
discrimination mutants, i.e. receptors that are differentially altered in their ability to bind and/or
mediate the actions of estrogens vs antiestrogens. Studies in a variety of cell lines and with different
promoters indicate marked cell context- and promoter-dependence in the actions of antiestrogens
and variant ERs. In several cell systems, estrogens and protein kinase activators such as cAMP
synergize to enhance the transcriptional activity of the ER in a promoter-specific manner. In
addition, cAMP changes the agonist/antagonist balance of tamoxifen-like antiestrogens, increasing
their agonistic activity and reducing their efficacy in reversing estrogen actions. Estrogens, and
antiestrogens to a lesser extent, as well as protein kinase activators and growth factors increase
phosphorylation of the ER and/or proteins involved in the ER-specific response pathway. These
changes in phosphorylation alter the biological effectiveness of the ER. Multiple interactions among
different cellular signal transduction systems are involved in the regulation of cell proliferation and
gene expression by estrogens and antiestrogens.

. Steroid Biochem. Molec. Biol., Vol. 53, No. 1-6, pp. 387-393, 1995

INTRODUCTION: ESTROGEN TARGET TISSUES of uterine cells [1]. Antiestrogens, which ‘antagonize

AND ANTIESTROGEN EFFECTIVENESS the actions of estrogens, therefore have much potential
as important therapeutic agents. Our studies have

Estrogens influence the growth, differentiation and examined the effects of antiestrogens on a variety of
functioning of many target tissues. These include tissues target cells including liver [5] and hypothalamus and
of the reproductive system such as the mammary gland pituitary [6], but have primarily focused on their effects
and uterus, cells in the hypothalamus and pituitary, on breast cancer and uterine cells [7].
as well as bone where estrogens play important roles The actions of estrogens on breast cancer and uterine
in bone maintenance; and the liver and cardiovascular cells are antagonized by antiestrogens, which bind to the
systems where estrogens influence liver metabolism, estrogen receptor (ER) in a manner that is competitive
the production of plasma lipoproteins, and exert with estrogen but they fail to effectively activate gene
cardioprotective effects [1-3]. Estrogens, in addition to  transcription [7-9]. Two of the major challenges in
stimulating mammary gland growth and duct develop- studies on antiestrogens are to understand what accounts
ment, also increase proliferation and metastatic activity  for their antagonistic effectiveness as well as the partial
of breast cancer cells [4] and stimulate the proliferation agonistic effects of some antiestrogens; and to under-
stand how one can achieve tissue selective agonistic/
Proceedings of the IX International Congress on Hormonal Steroids, antagonistic effects Of these cc')mpounds. One of our
Dallas, Texas, U.S.A., 2429 September 1994. approaches to addressing these issues has been to try to
*Correspondence to B. S. Katzenellenbogen. understand in detail how the ER discriminates between
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estrogen and antiestrogen ligands and between differ-
ent categories of antiestrogens. This has involved the
generation and analysis of variant human ERs with
mutations throughout the ER hormone-binding domain
and study of the activity of these receptors on different
estrogen-responsive genes in several cell backgrounds
when liganded with antiestrogen or estrogen. These
studies and those of others have provided consistent
evidence for the promoter-specific and cell-specific
actions of the estrogen-occupied and antiestrogen-
occupied ER. In addition, in the studies described
below, we have observed that protein kinase activators
enhance the transcriptional activity of the ER and alter
the agonist/antagonist balance of some antiestrogené,
suggesting that changes in cellular phosphorylation state
should be important in determining the effectiveness of
antiestrogens as estrogen antagonists.

ANALYSIS OF THE ER HORMONE BINDING
DOMAIN AND LIGAND DISCRIMINATION

We have examined the interactions of estrogen and
antiestrogens with the ER and the modulation of ER
activity by phosphorylation and interaction with other
proteins which result in changes in ER-mediated
responses. Studies by us [10-17] have provided strong
documentation that the response of genes to estrogen

and antiestrogen depend on four important factors:
(1) the nature of the ER, i.e. whether it is wild-type
or variant; (2) the promoter; (3) the cell context; and
(4) the ligand. The gene response, in addition, can be
modulated by cAMP, growth factors, and agents that
affect protein kinases and cell phosphorylation [15, 18—
21]. These may account for differences in the relative
agonism/antagonism of antiestrogens like tamoxifen on
different genes and in different target cells such as those
in breast cancer cells, versus uterus, versus bone.
Antiestrogens are believed to exert their effects in
large measure by blocking the actions of estrogens by
competing for binding to the ER and altering ER
conformation such that the receptor fails to effectively
activate gene transcription. In addition, antiestrogens
exert anti-growth factor activities, via a mechanism that
requires ER but is still not fully understood [22].
Models of antiestrogen action at the molecular level
are beginning to emerge, and recent biological studies
as well indicate that antiestrogens fall into two distinct
categories: antiestrogens, such as tamoxifen, that are
mixed or partial agonists/antagonists (type I), and com-
pounds, such as ICI 164,384, that are complete/pure
antagonists (type I1). The type I antihormone-ER com-
plexes appear to bind as dimers to estrogen response
elements (EREs); there, they block hormone-dependent
transcription activation mediated by region E of the
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Fig. 1. Structures of several estrogenic and antiestrogenic ligands for the estrogen receptor used in our studies.

The antiestrogens include the nonsteroidal compounds tamoxifen and LY117018 that often show partial

agonist/antagonist activity (type I antiestrogens) and the steroidal, more pure antiestrogen ICI164,384 (type II
antiestrogen).
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receptor, but are believed to have little or no effect on
the hormone-independent transcription activation func-
tion located in region A/B of the receptor [16]. Thus,
they are generally partial or mixed agonist/antagonists,
and their action must involve some subtle difference in
ligand-receptor interaction, very likely associated with
the basic or polar side chain that characterizes the
antagonist members of this class. In the case of the more
complete antagonists, such as ICI 164,384, obstruction
of ER binding to DNA and reduction of the ER content
of target cells appear to contribute to [23, 24], but may
not fully explain, the pure antagonist character of this
antiestrogen [25]. The structures of these antiestrogens,
which can be both steroidal or non-steroidal in nature,
are shown in Fig. 1, along with the structures of the
naturally occurring estrogen estradiol, and the non-
steroidal synthetic estrogen diethylstilbestrol. Of note,
is the fact that antiestrogens typically have a bulky
side chain which is basic or polar. This side chain is
important for antiestrogenic activity; removal of this
side chain results in a compound which is no longer an
antiestrogen and, instead, has only estrogenic activity.
Therefore we believe that interaction of this side chain
with the ER must play an important role in the
interpretation of the ligand as an antiestrogen.

In order to examine issues of ligand discrimination
by the ER, we have used site-directed and random
chemical mutagenesis to generate ERs with selected
changes in the hormone binding domain. We have
been particularly interested in identifying residues in
the hormone binding domain important for the ligand
binding and transactivation functions of the receptor,
and in elucidating the mechanism by which the ER dis-
criminates between agonistic and antagonistic ligands.
Although both estrogens and antiestrogens bind within
the HBD, the association must differ because estrogen
binding activates a transcriptional enhancement func-
tion, whereas antiestrogens fully or partially fail in this
role. Our studies have indicated that selective changes
near amino acid 380, and amino acids 520-530, and
changes at the C-terminus of the ER result in ER
ligand discrimination mutants [10, 13, 26]. These data
provide evidence that some contact sites of the receptor
with estrogen and antiestrogen differ; and that the
conformation of the receptor with estrogen and anti-
estrogen must also be different as a consequence [10,
27 and refs therein]. Qur structure-function analysis
of the hormone binding domain of the human ER has
utilized region-specific mutagenesis of the ER cDNA
and phenotypic screening in yeast, followed by the
analysis of interesting receptor mutants in mammalian
cells [14, 28]. Our observations, as well as very import-
ant studies by Malcolm Parker and colleagues [29, 30]
have shown a separation of the transactivation and
hormone-binding functions of the ER.

Since the basic or polar side chain is essential for anti-
estrogenic activity, and our previous studies identified
cysteine 530 as the amino acid covalently labeled by
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affinity labeling ligands [31], we introduced by site
directed mutagenesis of the ER ¢cDNA changes of
specific charged residues close to C530 [10]. Interest-
ingly, two mutants in which lysines at position 529
and 531 where changed to glutamines, so that the
local charge was changed, resulted in receptors with
an approx. 30-fold increased potency of antiestrogen in
suppressing estradiol-stimulated reporter gene activity.
Interestingly, these mutants receptors showed a reduced
binding affinity for estrogens, but retained unaltered
binding affinity for antiestrogen. These findings suggest
that we are able to differentially alter estrogen and
antiestrogen effectiveness by rather modest changes in
the ER, and that the region near C530 is a critical one
for sensing the fit of the side chain of the estrogen
antagonist. Studies from the Parker Laboratory [27]
have shown that nearby residues (i.e. G525 and M521
and/or S522 in the mouse ER) are also importantly
involved in conferring differential sensitivity to these
two categories of ligands.

We have also shown that if C530 is mutated, the co-
valent ligand tamoxifen aziridine binds to C381 instead,
another cysteine in the hormone binding domain [32].
One interpretation of this result is that the 530 and
380 regions of the hormone-binding domain are close
to one another in the three-dimensional ligand binding
pocket of the ER, such that the ligand can label either
site by alternative positioning of the reactive side chain
[32]. We therefore investigated charged amino acids in
the N-terminal portion of the hormone binding domain
and showed the region around amino acid 380 to be
important in transcriptional activity of the receptor [13].
As opposed to what was observed with charge changes
in the region near C530, we observed that change of the
charged residue E380 to E380Q resulted in a receptor
more sensitive to estrogen, but less sensitive than wild-
type ER to antiestrogen for suppression of transcrip-
tional activity. Although estrogen and antiestrogen
showed no alteration of their binding affinity for the
wild-type or E380Q mutant, the E380 mutant showed
greater transcriptional activity and enhanced binding
to estrogen response element DNA, resulting in its
increased sensitivity to estrogen. Our findings suggest
that this region is important in influencing DNA
binding and protein—protein interaction of the receptor
that modulates transcriptional activity and provide
additional evidence, suggesting that the conformation
of the receptor with estrogen and antiestrogen results
in differential transactivation activity. Our recent data
[26] has also shown that tamoxifen-like antiestrogens
are more pure antiestrogens with the ER missing the
C-terminal F domain, approx. the last 40 amino acids
of the receptor. The basis for the difference in the
estrogenic activity of tamoxifen-like estrogens with wild-
type ER versus ER missing this F domain is under
investigation and should provide important information
regarding the differential agonistic/antagonistic effects
of this category of antiestrogens.
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ALTERATION IN THE AGONIST/ANTAGONIST

BALANCE OF ANTIESTROGENS BY ACTIVATION

OF PROTEIN KINASE A SIGNALING PATHWAYS:

ANTIESTROGEN SELECTIVITY AND PROMOTER
DEPENDENCE

There is increasing evidence for ER interaction with
other cell signaling pathways. We became interested
in this cross-talk between cell signaling pathways in
our studies of estrogen regulation of the progesterone-
receptor and estrogen responsive promoter-reporter
gene constructs in cells. These studies showed stimu-
lation by growth factors (IGF-1, EGF) as well as
stimulation by cAMP and estrogen. The observation
that the stimulation by these agents could be suppressed
by antiestrogens or protein kinase inhibitors implied the
involvement of the ER and phosphorylation pathways in
these responses [18-21, 33]. We therefore have under-
taken studies to examine directly whether activators of
protein kinases can modulate transcriptional activity of
the ER.

We find that activators of protein kinase A and
protein kinase C markedly synergize with estradiol in
ER-mediated transcriptional activation and that this
transcriptional synergism shows cell- and promoter-
specificity [15, 21, 34]. The synergistic stimulation of
ER-mediated transcription by estradiol and protein
kinase activators did not appear to result from changes
in ER content or in the binding affinity of ER for ligand
or the ERE DNA, but, rather, may be a consequence
of a stabilization or facilitation of interaction of target
components of the transcriptional machinery, possibly
either through changes in phosphorylation of ER or
other proteins important in ER-mediated transcriptional
activation [34].

Figure 2 shows a model indicating how we think
the protein kinase—ER transcriptional synergism may
occur. Agents influencing protein kinase pathways may
enhance intracellular protein phosphorylation resulting
in either phosphorylation of the ER itself or the phos-
phorylation of nuclear factors with which the receptor
interacts in mediating transcription. Likewise, there
is evidence that the steroid hormone itself can alter

Peptide hormone
growth factors

\\

Estrogen receptor,

|
Steroid hormoneLL

Fig. 2. Model depicting protein kinase-ER transcriptional
synergism. See text for description.
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Table 1. Levels of Ulgand-stimulated and protein kinase
activator -stimulated phosphorylation of the human ER

Phosphorylation level

Treatments mean + SE n
Control 1
10~° M estradiol (E,) 28403 3
10~% M estradiol (E,) 434+0.7 6
108 M transhydroxytamoxifen (TOT) 2.9+0.1 2
1077 M ICI 164,384 3.6 +0.6 3
1 ug/ml cholera toxin (CT) + 107*M

isobutylmethylxanthine (IBMX) 1.9+03 3
10" M TPA 2.6+03 3

Human ER was expressed in COS-1 cells and transfected cells were
incubated for 4h with [3PJorthophosphate in the presence of
the indicated treatment. ER was immunoprecipitated with anti-
receptor antibodies, resolved by SDS-PAGE and transferred to
nitrocellulose. ER protein levels were determined by immunoblot
and ER phosphorylation by autoradiography as described [35].
The levels of phosphorylation of the different samples were
standardized according to ER protein levels and standard errors
(SE) were calculated. 1 represents the basal level of phosphoryl-
ation (vehicle alone) in each experiment. » represents the number
of experiments. (From Le Goff et al. ref. [35]).

receptor conformation increasing its susceptibility to
serve as a substrate for protein kinases [19, 35-38 and
Table 1]. Therefore, agents which increase the phos-
phorylation may, either through phosphorylation of the
ER itself, or through phosphorylation of nuclear factors
required for ER transcription, result in synergistic
activation of ER-mediated transcription.

As shown in Fig. 3, we have compared the effects of
cAMP on the transcriptional activity of the estradiol-
liganded and antiestrogen-liganded ER complexes.
We find that increasing the intracellular concentration
of cAMP, or of protein kinase. A catalytic subunit
of transfection [15], activates and/or enhances the
transcriptional activity of type I but not type II anti-
estrogen-occupied ER complexes and reduces the
estrogen antagonist activity of the type I transhydroxy-
tamoxifen (T'OT) antiestrogen. In Fig. 3(A and B), we
have determined, in MCF-7 human breast cancer cells,
the effect of cAMP on the activity of TOT, ICI 164,384
and E, on a simple TATA promoter with one consensus
ERE upstream of the CAT gene and on the more
complex pS2 gene promoter and 5’-flanking region
(—3000 to +10) containing an imperfect ERE. The
endogenous pS2 gene is regulated by E, in MCF-7
breast cancer cells. Estradiol increased the transcription
of both of these gene constructs, and treatment with
IBMX/CT and E, evoked a synergistic increase in
transcription, with activity being ca 2.5 times that of
E, alone. Both antiestrogens (TOT and ICI) failed to
stimulate transactivation of these reporter gene con-
structs, but in the presence of IBMX/CT, TOT gave
significant stimulation of transcription (85 or 609%, that
of E, alone). ICI failed to stimulate transactivation even
in the presence of IBMX/CT, and ICI fully blocked E,
stimulation in the presence or absence of cAMP. By
contrast, treatment with IBMX/CT reduced the ability
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Fig. 3. Effect of IBMX/CT on the ability of E, and antiestro-
gens to stimulate transactivation of ERE-TATA-CAT (panel
A) and pS2-CAT (panel B), and on the ability of antiestrogens
to suppress E,-stimulated transactivation. MCF-7 cells
were transfected with the indicated reporter plasmid and an
internal control plasmid that expresses f-galactosidase and
were treated with the agents indicated for 24 h. Each bar
represents the mean + SEM (n = 3 experiments). * Indicates
significant difference from the no IBMX/CT cells (P <0.05).
C, control ethanol vehicle; E,, 107°M; TOT (hydroxytam-
oxifen), 10~ M; ICI (ICI 164,384), 10-¢ M; IBMX (3-isobutyl-
1-methyl-xanthine), 10~* M; and CT (cholera toxin), 1 pg/ml.
(From Fujimoto and Katzenellenbogen, ref. [15]).

of TOT to inhibit E, transactivation. While TOT
returned E, stimulation down to that of the control
in the absence of IBMX/CT (compare open bars E,
vs E, + TOT), TOT only partially suppressed the E,
stimulation in the presence of IBMX/CT (compare
stippled bars E, vs E, + TOT).

Although alteration in the agonist and antagonist
activity of TOT was observed with promoter-reporter-
constructs containing a simple TATA promoter and a
more complex, pS2 promoter, elevation of cAMP did
not enhance the transcription by either TOT or estra-
diol of the reporter plasmid ERE-thymidine kinase-
CAT [15]. Thus, this phenomenon is promoter-specific.
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Of note, cAMP and protein kinase A catalytic subunit
transfection failed to evoke transcription by the more
pure antiestrogen ICI 164,384 with any of the promoter-
reporter constructs tested. These findings, which docu-
ment that stimulation of the protein kinase A signaling
pathway activates the agonist activity of tamoxifen-like
antiestrogens, may in part explain the development of
tamoxifen resistance by some ER-containing breast
cancers. They also suggest that the use of antiestrogens
like ICI 164,384, that fail to activate ER transcription
in the presence of cAMP, may prove more effective for
long-term antiestrogen therapy in breast cancer.

PHOSPHORYLATION OF THE
ESTROGEN RECEPTOR

Since our data suggested that estrogens, and agents
that activate protein kinases, might influence ER tran-
scription by altering the state of phosphorylation of the
ER and/or other factors required for ER regulation of
transcription, we undertook studies to examine directly
the effects of these agents on ER phosphorylation.
In addition, we compared the effects of the type I and
type II antiestrogens on phosphorylation of the ER
(Table 1). Estradiol, each of the two antiestrogens,
as well as protein kinase A and C activators enhanced
overall ER phosphorylation, and in all cases, this
phorphorylation occurred exclusively on serine residues
[35]. Tryptic phosphopeptide patterns of wild-type and
domain A/B-deleted receptors and site-directed muta-
genesis of several serines involved in known protein
kinase consensus sequences allowed us to identify serine
104 and/or serine 106 and serine 118, all three being part
of a serine—proline motif, as major ER phosphorylation
sites. Mutation of these serines to alanines so as to elim-
inate the possibility of their phosphorylation, resulted
in an approx. 40%, reduction in transactivation activity
in response to estradiol while mutation of only one of
these serines showed an approx. 159, decrease in
activation [35]. Of note, estradiol and antiestrogen-
occupied ERs showed virtually identical two-dimen-
sional phosphopeptide patterns suggesting similar sites
of phosphorylation. In contrast, the cAMP-stimulated
phosphorylation likely occurs on different phosphoryl-
ation sites as indicated by some of our mutational
studies [35] and this aspect remains under investigation
in our laboratory.

cAMP-DEPENDENT SIGNALING PATHWAY
INVOLVEMENT IN ACTIVATION OF THE
TRANSCRIPTIONAL ACTIVITY OF ERs
OCCUPIED BY TAMOXIFEN-LIKE BUT NOT
ICI 164,384-LIKE ANTIESTROGENS

Our data provide strong evidence for the involvement
of cAMP-dependent signaling pathways in the agonist
actions of tamoxifen-like estrogen antagonists. The
promoter-specificity of the transcriptional enhancement
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phenomenon suggests that factors in addition to ER are
probably being modulated by protein kinase A pathway
stimulation. The findings imply that changes in the
cAMP content of cells, which can result in activation
of the agonist activity of tamoxifen-like antiestrogens,
might account, at least in part, for the resistance to
antiestrogen therapy that is observed in some breast
cancer patients. Of interest, MCF-7 cells transplanted
into nude mice fail to grow with tamoxifen treatment
initially, but some hormone-resistant cells grow out
into tumors after several months of tamoxifen exposure
[8, 39, 40]. Studies have shown that this resistance to
tamoxifen is, more correctly, a reflection of tamoxifen
stimulation of proliferation, representing a change in
the interpretation of the tamoxifen—-ER complex and
its agonist/antagonist balance. It is of interest that we
found the pS2 gene, which is under estrogen and anti-
estrogen regulation in breast cancer [41], to be activated
by tamoxifen in the presence of elevated cAMP. By
contrast, however, antiestrogens such as ICI, shown in
many systems to be more complete estrogen antagon-
ists, are not changed in their agonist/antagonist balance
by increasing intracellular concentrations of cAMP.
Therefore, ICI-like compounds may prove to be
more efficacious and less likely to result in antiestrogen-
stimulated growth.

The transcriptional enhancement we have observed
between protein kinase A activators and ER occupied
by tamoxifen-like antiestrogens and estradiol provides
further evidence for cross-talk between the ER and
signal transduction pathways regulated by cAMP that
are important in ER-dependent responses.
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ABSTRACT

We have investigated the ability of several transcriptionally inac-
tive estrogen receptor (ER) mutants to block endogenous ER-medi-
ated transcription in MCF-7 human breast cancer cells. In transient
transfections of MCF-7 cells, two of the mutants, a frame-shifted ER
(S554fs) and a point-mutated ER (L540Q), strongly inhibit the ability
of endogenous wild-type ER to activate transcription of estrogen-
regulated reporter plasmids. A third mutant, ER1-530, which is miss-
ing 65 residues from its carboxy-terminus, is a weaker repressor of
estradiol-stimulated transcription. When an estrogen response ele-
ment (ERE)-thymidine kinase-chloramphenicol acetyltransferase re-
porter gene is used, S554fs, 1.540Q, and ER1-530 suppress the tran-
scriptional activity of endogenous MCF-7 ER by 87%, 97%, and 62%,
respectively. The magnitude of dominant negative repression is pro-
moter specific; when an ERE-pS2-chloramphenicol acetyltransferase
reporter is employed, inhibition of endogenous ER activity by equiv-
alent amounts of S554fs, 1L540Q, and ER1-530 ranges from 85-97%.

Dose-response studies show the S554fs mutant to be the most potent
of the three ER mutants as a repressor of estrogen action in these cells.
In addition, elevated levels of intracellular cAMP, achieved by the
addition of 3-isobutyl-1-methylxanthine plus cholera toxin to cells,
fail to compromise the effectiveness of these mutants as dominant
negative ERs despite the cAMP-enhanced transcriptional activity of
ER. The mutants are also powerful repressors of the agonist activity
of trans-hydroxytamoxifen-stimulated ER transcription. The domi-
nant negative activity of the three mutants is lost when the A/B
domain of these receptors is deleted, implying an important role for
this N-terminal region of the ER in the ability of these mutants to
inhibit endogenous wild-type ER activity. All in all, the data suggest
that S554fs in particular is a reasonable candidate for studies
designed to use a dominant negative ER to inhibit the estrogen- and
tamoxifen-stimulated growth of human breast cancer cells.
(Endocrinology 186: 3194-3199, 1995)

HE GROWTH of nearly 40% of all human breast tumors
is highly dependent upon the sex steroid hormone,
estrogen (1-3). As the proliferative effect of estrogens on
breast cancer cells is mediated by the estrogen receptor (ER),
there is much interest in exploring the means by which this
protein can be functionally inactivated. We are currently
investigating the possibility of eventually employing dom-
inant negative ER mutants to block wild-type ER-mediated
transcription and growth stimulation in estrogen-dependent
breast cancer cells.

The ER, which belongs to the conserved superfamily of
steroid and thyroid receptors, is a nuclear regulatory protein
that functions as a hormone-activated transcription factor in
target cells (4, 5). Receptor activation is apparently a conse-
quence of ligand-induced conformational changes in ER
structure (6). The hormone-receptor complex binds with high
affinity to a well defined palindromic nucleotide sequence,
the estrogen response element (ERE), which is usually
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located upstream of an estrogen-responsive gene (7, 8). It
appears that activated receptors recruit transcription factors
and establish transcriptionally productive protein-protein in-
teractions with other components of the transcription machin-
ery (9-11). Current attempts to functionally inactivate the ER in
in vivo and in vitro experimental systems and in actual breast
cancer therapy employ the antiestrogen, tamoxifen. Tamoxifen
binds to the ER and is thought to induce a conformational
change that renders the receptor virtually incapable of activat-
ing transcription of genes involved in cancer cell proliferation
and tumorigenesis (12). Administered antiestrogens have been
found, however, to retain estrogenic activity in certain tissues,
including some cancerous mammary tissues (13). We wanted
to explore the feasibility of employing dominant negative ER
mutants to suppress ER-mediated transcription, whether 173-
estradiol (E,) or tamoxifen stimulated, in estrogen-responsive
breast cancer cells.

Dominant negative mutants of a protein, when
coexpressed with the wild-type version, block the action of
the parent protein (14-16). Our group previously reported
the successful generation of three dominant negative ER
mutants and their characterization in ER-deficient Chinese
hamster ovary (CHO) cells (17). In these experiments, we
investigated the effectiveness of the reported mutants as
inhibitors of endogenous ER in an E,-stimulated human
breast cancer cell line. We also examined the issue of dom-
inant negative inhibition of tamoxifen-stimulated ER
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transcription, assessed the ability of the ER mutants to re-
press estrogen action in the presence of elevated levels of
intracellular cAMP, and examined the role of the N-terminal
portion of the ER in dominant negative ER activity. These
studies should prove informative in efforts to identify ER
mutants that can plausibly be employed in future efforts to
antagonize the estrogen- and tamoxifen-stimulated growth
of human breast cancer cells.

Materials and Methods
Chemicals and materials

Cell culture media and sera were purchased from Gibco (Grand
Island, NY). Radioinert E,, 3-isobutyl-1-methylxanthine (IBMX), cholera
toxin (CT), and chloramphenicol were obtained from Sigma Chemical
Co. (St. Louis, MO). The antiestrogen trans-4-hydroxytamoxifen (TOT)
was provided by ICI Pharmaceuticals (Macclesfield, UK). [*H]Acetyl
coenzyme A (1 mCi/ml) was obtained from DuPont-New England
Nuclear (Boston, MA).

Plasmids

For transcriptional activation studies, the estrogen-responsive plas-
mids ERE-tk-chloramphenicol acetyltransferase (CAT) (18) and (ERE),-
pS2-CAT were employed. (ERE),-pS2-CAT was constructed by W. Lee
Kraus of this laboratory by cloning two copies of a consensus estrogen-
responsive element into the BamHI site of pS2-CAT (19). Mutant human
ER complementary DNAs subcloned into the eukaryotic expression
vector pCMV5 (CMV = cytomegalovirus) (20) were used to express ER
mutants in transfected cells. The plasmid pCH110 (Pharmacia LKB Bio-
technology, Piscataway, NJ), which contains the B-galactosidase gene,
was used as an internal control for transfection efficiency in all exper-
iments. The plasmid pTZ19, used as carrier DNA, was provided by Dr.
Byron Kemper of the University of Illinois.

ER mutagenesis and expression of mutant receptors in cells

S554fs, 1L540Q, and ER1-530 were generated as previously described
(21). The M7 mutant K520D/G521V/E523R /H524L was described pre-
viously (17). Complementary DNAs encoding the N-terminal-truncated
(AA/B) versions of these mutants were generated by replacing the
HindIll fragment of these full-length mutants with the HindIII fragment
of CMV-AA/B hER [which deletes nucleotides from the CMV-5
polylinker (22) to codon 176]. The resultant expression vectors contain
the human ER-coding region from amino acids 176-595 and produce
human ER derivatives that are deleted of residues N-terminal to Met'”®
in the ER primary sequence. Although we could not accurately deter-
mine levels of expression in MCF-7 cells for the mutant receptors (AA /B
dominant negative ERs, $554fs, L540Q, ER1-530, and M7) because of the
small percentage of cells transfected and because many of these recep-
tors are indistinguishable on Western blots from endogenous MCF-7 ER,
we did compare expression levels in CHO cells. We found comparable
levels of these receptors made when equal amounts of expression plas-
mids were transfected (as reported in Refs. 17, 21, and 23, where ex-
pression levels for many of these mutants were determined). We also
observed that the AA /B dominant negative ERs and AA /B wild-type ER
were expressed at similar levels after transfection into MCF-7 cells.

a

Cell culture and transient transfections

MCF-7 human breast cancer cells were maintained in Eagle’s Mini-
mum Essential Medium (MEM; Gibco, Grand Island, NY) supplemented
with 5% calf serum (Hyclone, Logan, UT), 25 pg/ml gentamycin, 100
U/ml penicillin (Gibco), and 100 ug/ml streptomycin (Gibco). Before the
experiments, cells were maintained for 1 week in MEM containing the
above antibiotics and 5% charcoal dextran-treated calf serum (CDCS);
they were then cultured for 1 week in phenol red-free MEM with 5%
CDCS and the same antibiotics. Transient transfections were performed
as follows. Cells were plated at about 4 X 10° cells/100-mm dish, main-
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tained at 37 C in a humidified 5% CO, atmosphere for roughly 48 h, and
transfected by the CaPO, coprecipitation method (24). In transactivation
assays, 100-mm plates were treated with 1.0 ml DNA precipitate con-
taining 2.0 pg reporter plasmid, 3.0 ug pCH110 internal control plasmid,
0.2-10 ug ER or ER mutant expression vector, and up to 9 ug pTZ carrier
DNA. In all cases, cells remained in contact with the precipitate for 4-6
h and were then subjected to a 3-min glycerol shock (25% in MEM plus
5% CDCS). Plates were rinsed, given fresh medium, and treated with E,,
TOT, E, plus IBMX/CT, or ethanol vehicle as appropriate. Cells were
harvested after 24 h, and extracts were prepared in 250 ul 250 mm Tris,
pH 7.5, using three freeze-thaw cycles. B-Galactosidase activity was
measured (25) to normalize for transfection efficiency among plates.
CAT assays were performed as previously described (26).

Results

ER mutants S554fs and L540Q are potent repressors of
E,-stimulated endogenous ER activity

Three ER mutants were selected for study because they
had previously exhibited strong dominant negative activity
in transfected CHO cells (17). The mutants, generated by
random chemical mutagenesis, include a frame shift (5554fs),
a point mutation (L540Q), and a truncated receptor (ER1-
530) (21). MCF-7 cells were transfected with either the ERE-
tk-CAT or (ERE),-pS2-CAT reporter plasmid in addition to
expression vector for the ER mutant under examination. CAT
activity in response to a saturating dose of E, (107° m) was
then measured for each mutant studied. The data in Fig. 1
indicate dramatic differences in resultant CAT activity be-
tween MCEF-7 cells into which no ER mutants were intro-
duced and those transfected with dominant negative ERs.
Whereas endogenous MCF-7 ER exhibited a 70-fold induc-
tion of transcriptional activity (set at 100%) from an ERE-
tk-CAT reporter in response to 107° M E,, cells transfected
with 10 ug expression vector for S554fs, L540Q, and ER1-530
exhibited 87%, 97%, and 62% repressions of E,-induced tran-
scription, respectively (Fig. 1). Lesser amounts of expression
vector for each mutant were used in an attempt to gauge their
relative potencies as dominant negative inhibitors. These
studies showed S554fs to be the most potent of the three ER
mutants in inhibiting E,-induced transcriptional activity in
MCE-7 cells (Fig. 1). When a reporter gene containing the pS2
promoter, (ERE),-pS2-CAT, was used in similar experiments,
E, stimulated a 30-fold increase in MCF-7 ER transcriptional
activity, and 10 ug expression vector for S554fs, L540Q), and
ER1-530 repressed ER-mediated transcription by 90%, 97%,
and 85%, respectively (Fig. 2). Comparative studies with
lesser amounts of the three mutants again showed S554fs to
be the most potent of the three. Another ER mutant, K520D/
G521V /E523R/H524L (M7), which was previously deter-
mined to be transcriptionally inactive and to show only mod-
est ER inhibitory activity in CHO cells (17, 27), was assayed
for dominant negative activity in the MCF-7 cell system.
Consistent with its weak dominant negative activity in CHO
cells, the M7 mutant failed to inhibit ER-mediated transcrip-
tion from either reporter gene employed in this study when
transfected at the 1.5 ug expression plasmid level (Figs. 1 and
2), whereas it demonstrated some suppressive activity at the
10-pg plasmid concentration, but always much less than that
of the three dominant negative mutants. Transfection of 10
g of the empty vector pCMV5 had no effect on endogenous
MCF-7 ER activity (data not shown).
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Fic. 1. Dose-response analysis of the MCF-7 ER
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S554fs L540Q ER1-530 M7

ability of ER mutants to block Eo-stimu-
lated transcriptional activity of endoge-
nous ER. MCF-7 cells were cotransfected
with the reporter plasmid ERE-tk-CAT;
the indicated amounts of expression vec-
tor for the ER mutants S554fs, 1.540Q,
ER1-530, and M7; and a B-galactosidase
internal reporter to correct for transfec-
tion efficiency. Two tenths to 10 pg mu-
tant ER expression vector were em-
ployed. Cells were treated with 107°ME,,
for 24 h. Extracts were prepared and an-
alyzed for B-galactosidase and CAT ac-
tivity as described in Materials and Meth-
ods. The magnitude of wild-type (MCF-7)
ER activation by E, alone was set at
100%. Error bars represent the range
(n = 2 experiments) or SEM (n = 3-6 ex-
periments). Each value from an experi-
ment is the average of duplicate determi-
nations from two plates of cells.
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F1G. 2. Examination of the ability of ER mutants to block E,-stim-
ulated endogenous ER transcriptional activity from a reporter plas-
mid containing the pS2 promoter. MCF-7 cells were cotransfected
with the reporter plasmid (ERE),-pS2-CAT; 1.5 or 10 ug expression
vector for the ER mutants S554fs, L.540Q, ER1-530, and M7; and a
B-galactosidase internal reporter to correct for transfection efficiency.
Cells were treated with 107° M E, for 24 h. Extracts were prepared
and analyzed for B-galactosidase and CAT activity as described in
Materials and Methods. The magnitude of wild-type ER activation by
E, alone was set at 100%. Error bars represent the range (n = 2
experiments) or SEM (n = 3-6 experiments). Each value from an
experiment is the average of duplicate determinations from two plates
of cells.

Dominant negative mutants strongly antagonize
tamoxifen-stimulated transcription

We next examined whether the ER mutants were capa-
ble of inhibiting TOT-stimulated transcription. TOT treat-
ment of MCF-7 cells resulted in a 9-fold induction of ER-
mediated transcription, i.e. a response about 30% of that
elicited by E, (Fig. 3). This activity was almost completely
eliminated in cells containing any of the transfected dom-
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FiG. 3. Examination of the ability of ER mutants to block TOT-stim-
ulated transcriptional activity of endogenous ER. MCF-7 cells were
cotransfected with the (ERE),-pS2-CAT reporter plasmid; 0.2 ug ex-
pression vector for the ER mutants S554fs, L540Q, and ER1-530; and
a B-galactosidase internal reporter to correct for transfection effi-
ciency. Cells were treated with 10~7 M TOT for 24 h. Extracts were
prepared and analyzed for B-galactosidase and CAT activity as de-
scribed in Materials and Methods. The magnitude of wild-type ER
activation by TOT alone (8-fold) was set at 100%. Error bars represent
the range (n = 2 experiments) or SEM (n = 3 experiments). Each value
from an experiment is the average of duplicate determinations from
two plates of cells.

inant negative mutants. A low amount (0.2 ug) of expres-
sion vector for 5554fs, L540Q, and ER1-530 suppressed
100%, 84%, and 93% of TOT-stimulated transcription, re-
spectively (Fig. 3). Thus, the stimulatory activity of the
TOT-occupied MCF-7 ERs appeared to be even more ef-
fectively suppressed by the dominant negative ER mutants
than was that of the E,-occupied receptors.
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S554fs and L540Q funbtion well as dominant negative
receptors in the presence of elevated intracellular cAMP

Recent reports have documented the ability of protein
kinase A activators to increase ligand-stimulated transacti-
vation by steroid receptors, including ER (18, 23, 28-32). As
such, the ability of the mutant ERs to antagonize ER-medi-
ated transcription in the presence of high levels of intracel-
lular cAMP was assessed by treating transfected MCF-7 cells
not only with E,, but also with IBMX/CT, agents that have
been shown to elevate intracellular cAMP in these cells (33).
Although there was a strong induction of ER-mediated tran-
scriptional activity from the ERE-tk-CAT reporter gene in
response to E, treatment (set at 100%), this was elevated
consistently (~1.4-fold) when IBMX/CT was also adminis-
tered to transfected cells. Exposure to IBMX/CT alone had
little effect on MCF-7 ER activity. When 0.75 ug expression
plasmid for each of the dominant negative mutants was
introduced into E,- plus IBMX/CT-treated MCF-7 cells,
S554fs, 1.540Q, and ER1-530 achieved repressions of 87%,
88%, and 61%, respectively (Fig. 4A, B). These levels of in-
hibition compare favorably to those achieved in the absence
of elevated intracellular cAMP and were, in fact, slightly
greater. Similar experiments (Fig. 4B) were conducted using
the (ERE),-pS2-CAT reporter gene; E, plus IBMX/CT expo-
sure elicited a stimulation of MCF-7 ER CAT activity 2.2-fold
that evoked by E, alone. Once again, repression of ER activity
by the dominant negative mutants in the absence of in-
creased levels of intracellular cAMP was almost identical to
that in the presence of added IBMX/CT (Fig. 4B). The ex-
periments suggest that the presence of high levels of cAMP
does not impair the ability of these mutants to act as strong
dominant negative inhibitors of ER action despite the cAMP-
stimulated enhancement of ER transcriptional activity.

ER mutants deleted of their N-terminal transactivation
function lose the dominant negative phenotype

The dominant negative ER mutants contain the entire A/B
regions of the receptor and, therefore, have an intact N-
terminal transactivation (AF-1) domain. These AF-1 regions,
which are widely thought to be hormone independent (34),
might confer upon the mutants some intrinsic ability to ac-
tivate transcription, thereby reducing their dominant nega-
tive inhibitory action. In an attempt to further increase the
potency of the ER mutants as dominant negative ER inhib-
itors, we deleted the first 175 residues at their N-terminals
and, therefore, removed their AF-1 transactivation functions.
We then transfected MCF-7 cells with these truncated ER
mutants and compared their abilities to function as dominant
negative ER repressors with those of the full-length domi-
nant negative mutants. Although 0.5 pg expression vector for
5554fs and 1.540Q achieved 60% and 20% repression of tran-
scriptional activity, and 1.5 ug expression vector for S554fs
and L540Q achieved 80-85% repression of transcriptional
activity, equivalent amounts of AA/B S554fs and AA/B
L540Q showed little ability to repress E, action (Fig. 5). The
ER1-530 mutant, although the least effective of the three
dominant negative receptors, also became less effective in
suppressing endogenous ER activity when present in the
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Fic. 4. Examination of the ability of ER mutants to block E,-
stimulated transcriptional activity of endogenous ER in the presence
of elevated intracellular cAMP. MCF-7 cells were cotransfected with
the ERE-tk-CAT reporter plasmid; 0.75 ug expression vector for the
ER mutants S554fs, L540Q, ER1-530, and M7; and a B-galactosidase
internal reporter to correct for transfection efficiency (A) or the ERE,-
pS2-CAT reporter plasmid, 1.5 pg mutant ER expression vector, and
a B-galactosidase internal reporter (B). Cells were treated with
IBMX/CT alone, E, alone, or 10"° M E, and 10~* M IBMX plus 1 ug/ml
CT for 24 h, Extracts were prepared and analyzed for 8-galactosidase
and CAT activities as described in Materials and Methods. The mag-
nitude of wild-type ER activation by E, alone was set at 100%, and
all values (with and without IBMX/CT exposure) are expressed as a
percentage of the value for wild-type ER plus E, alone. Error bars
represent the range (n = 2 experiments) or SEM (n = 3 experiments).
Each value from an experiment is the average of duplicate determi-
nations from two plates of cells.

truncated (AA/B) form (Fig. 5). Using 1.5 ug expression
vector, the ER1-530 mutant achieved a 45% repression of
endogenous ER activity; the repression was reduced to 15%
for the AA /B ER1-530 mutant. As such, deletion of the AF-1
transactivation domain from these ER mutants not only
failed to increase their potency as dominant negative ER
repressors, but it also destroyed their ability to function as
effective inhibitors of ER action.

Discussion

We report that two human ER mutants, S554fs and
L540Q, are potent dominant negative inhibitors of endo-
genous ER transcriptional activity in MCF-7 human breast
cancer cells. A third mutant, ER1-530, is a weaker repres-
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Fic. 5. Examination of the ability of AA/B ER mutants to block E,-
stimulated transcriptional activity of endogenous ER. MCF-7 cells
were cotransfected with the ERE-tk-CAT reporter plasmid, a 8-ga-
lactosidase internal reporter to correct for transfection efficiency, and
0.5 or 1.5 pg expression vector for the ER mutants S554fs, AA/B
S554fs, 1.540Q, AA/B L540Q, ER1-530, AA/B ER1-530, and M7. Cells
were treated with 10~° M E, for 24 h. Extracts were prepared and
analyzed for B-galactosidase and CAT activities as described in
Materials and Methods. The magnitude of wild-type ER activation by
E, alone was set at 100%. Error bars represent the range (n = 2
experiments) or SEM (n = 3 experiments). Each value from an exper-
iment is the average of duplicate determinations from two plates of
cells.

sor of ER action in this cell line. As S554fs has previously
been shown to bind to ERE DNA with a lower affinity than
that of wild-type ER (17), its relatively high potency as a
dominant negative ER in MCF-7 cells may arise from an
ability to form heterodimers with the wild-type ER, which
are transcriptionally compromised. Alternatively, it could
be the result of a greater ability on the part of S554fs to
sequester cellular factors with which wild-type ER inter-
acts to activate transcription. Transcriptional inactivity
alone is not sufficient to confer a strong dominant negative
phenotype, however, because the ER mutant M7 was not
an effective repressor of MCF-7 ER activity at concentra-
tions (0.5 or 1.5 ug) at which the dominant negative ER
mutants showed suppressive activity. At higher plasmid
concentrations (10 pg), M7 showed some suppressive ac-
tivity, consistent with its ability to act as an ER-selective
inhibitor at high concentrations 17, 27).

S554fs, L540Q, and ER1-530 all proved to be extremely
effective inhibitors of TOT-stimulated ER activity. It is pos-
sible that the conformation of wild-type ER when bound by
TOT (6, 10, 35) may lend the receptor to easy suppression not
only by S554fs and L540Q, but also by ER1-530.

Given reports documenting the ability of protein kinase A
activators to increase ligand-stimulated transactivation by
ER (23, 28) as well as recent studies by us demonstrating the
occasional transcriptional activation of the ER mutants
S554fs and 1.540Q in some cell and promoter contexts by a
combination of estrogen or antiestrogen ligands and agents
that elevate intracellular cAMP (18), we assessed the ability
of the mutant ERs to antagonize ER-mediated transcription
in the presence of high levels of intracellular cAMP. When
the dominant negative ER mutants were introduced into E,-
and IBMX/CT-treated MCF-7 cells, S554fs, L540Q, and
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ER1-530 achieved repressions of 87%, 88%, and 61%, respec-
tively, which compare favorably with those achieved in the
absence of elevated intracellular cAMP. As it is now clear that
celland promoter context markedly influence transcriptional
activation by the ER (34, 36) and other steroid and thyroid
hormone receptors (37, 38), it is possible that elevated levels
of cAMP in MCF-7 cells modulate either the conformation or
the activity of wild-type ER, the mutant ERs, or cellular
factors with which they interact, so as to maintain or even
enhance the dominant negative effects seen.

Of note, we observed that deletion of the N-terminal A/B
domain of the dominant negative receptors, which contains
the AF-1 transactivation region, rendered them ineffective.
Therefore, it appears that the N-terminal region of the ER,
which is known to interact with other cellular factors (34, 36),
is necessary for the ER mutants to function as dominant
negative inhibitors. This raises the distinct possibility that the
mutants may need to interact with cellular factors other than
the ER to achieve their inhibitory effects and is consistent
with the promoter dependence of the dominant negative
phenomenon. For example, the mutants, especially ER1-530,
differed somewhat in their effectiveness in suppressing
MCF-7 ER activity on the estrogen-responsive tk vs. pS2
promoter gene constructs studied. On the other hand, the
possibility that the N-terminal-truncated ER mutants may be
impaired in some other function, such as dimerization, can-
not be formally discounted, and experiments exploring these
issues are being undertaken.

Recent studies have revealed the presence of ER variants,
some demonstrating dominant negative activity, in breast
cancers (1). These naturally occurring variants are truncated
receptors due to the deletion of exon 3 (39) or exon 7 (40).
Their role in modulating the response of wild-type ER to
endocrine therapies is an issue of great interest. Our studies
indicate that potent dominant negative ER mutants can
markedly suppress the activity of the endogenous wild-type
ER in breast cancer cells.

In summary, ER mutants S554fs and 1L540Q seem to be
potent repressors of ligand-stimulated transcriptional activ-
ity in MCF-7 cells. Although cAMP significantly elevates
wild-type ER-mediated transcriptional activity, the presence
of elevated levels of intracellular cAMP does not seem to
thwart the ability of any of these mutants to function as
dominant negative ER suppressors in MCE-7 cells; in fact, in
these cells, it sometimes appeared to enhance their inhibitory
function slightly. The results, taken as a whole, strongly
suggest the suitability of these ER mutants for further ex-
periments aimed at suppressing not only the ligand-induced
transcriptional activity of ER in MCF-7 human breast cancer
cells, but also the stimulation of cell growth and proliferation.
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Estrogen Receptors: Bioactivities and Interactions with Cell Signaling Pathways'
Benita S. Katzenellenbogen’

Departments of Molecular and Integrative Physiology, Cell and Structural Biology
University of lllinois, Urbana, Illinois 61801-3704

ABSTRACT

Estrogens regulate the growth, differentiation, and functioning of diverse target tissues, both within and outside of the reproductive
system. Most of the actions of estrogens appear to be exerted via the estrogen receptor (ER) of target cells, an intracellular receptor that
is a member of a large superfamily of proteins that function as ligand-activated transcription factors, regulating the synthesis of specific
RNAs and proteins. To understand how the ER discriminates between estrogen ligands, which activate the ER, and antiestrogen ligands,
which fail to effectively activate the ER, we have generated and analyzed human estrogen receptors with mutations in the ER hormone
binding domain. These studies provide evidence for the promoter-specific and cell-specific actions of the estrogen-occupied and anties-
trogen-occupied ER, highlight a regional dissociation of the hormone binding and transcription activation functions in domain E of the
receptor, and indicate that some of the contact sites of estrogens and antiestrogens in the ER are likely different. In addition, multiple
interactions among different celluar signaling pathways are involved in the regulation of gene expression and cell proliferation by the ER.
In several cell types, protein kinase activators and some growth factors enhance the transcriptional activity of the ER. Cyclic AMP also
alters the agonist/antagonist balance of some antiestrogens. Estrogens and, to a lesser extent, antiestrogens, as well as protein kinase
activators and growth factors increase phosphorylation of the ER and possibly other proteins involved in the ER-specific response pathway,
suggesting that changes in cellular phosphorylation state will be important in determining the biological activity of the ER and the effec-
tiveness of antiestrogens as estrogen antagonists. The ER also has important interrelationships with the progesterone receptor (PR} system
in modulation of biological responses. Liganded PR-A and PR-B can each suppress estradiol-stimulated ER activity, with the magnitude of
repression dependent on the PR isoform, progestin ligand, promoter, and cell type. These findings underscore the mounting evidence for

the importance of interactions between members of the steroid hormone receptor family.

OVERVIEW: THE DIVERSITY OF ESTROGEN
TARGET TISSUES

The actions of estrogenic hormones are mediated through
the estrogen receptor (ER), a member of a large superfamily
of nuclear receptors that function as ligand-activated tran-
scription factors. These receptor proteins share a common
structural and functional organization, with distinct domains
that are responsible for ligand-binding, DNA-binding, and
transcription activation [1-5].

Two highly conserved regions are observed in these re-
ceptors, one in approximately the middle of the protein
(known as domain C), which is involved in interaction with
DNA, and one in the carboxy-terminal region (known as
domain E/F) that binds hormones and is structurally and
functionally complex. Upon binding estrogen, the ER binds
to estrogen-response-element DNA, often located in the 5
flanking region of estrogen responsive genes. These DNA
sequences function as enhancers, conferring estrogen in-
ducibility on the genes. The estrogen-occupied receptor is
then thought to interact with transcription factors and other
components of the transcriptional complex to modulate
gene transcription [4—8].

Estrogens, acting via the ER, play important roles in reg-

"This research was supported by grants CA18119 and CA60514 from the National Insti-
tutes of Health and by grant DAMD17-94-]-4205 from the U.S. Army.

ZCorrespondence: Dr. Benita S. Katzenellenbogen, Department of Molecular and Inte-
grative Physiology, University of Iltinois, 524 Burrill Hall, 407 South Goodwin Avenue, Ur-
bana, 1L 61801-3704. FAX: (217) 244-9906.

ulating the growth, differentiation, and functioning of many
reproductive tissues including the uterus, vagina, ovary,
oviduct, and mammary gland. In the uterus and mammary
gland, estrogens increase proliferation and alter cell prop-
erties via, at least in part, the induction of growth factors
and growth factor receptors, an effect largely antagonized
by antiestrogens [9-13]. Estrogens also have important sites
of action in the pituitary, hypothalamus, and specific brain
regions, while exerting crucial actions as well on other tis-
sues including bone, liver, and the cardiovascular system
[14—-16]). Thus these hormones exert their effects on many,
diverse target tissues. Because of this diversity of estrogen
target tissues, much current interest focuses on trying to un-
derstand the basis for the cell context- and promoter con-
text-dependent actions of estrogens and antiestrogens [17-
20] and on the development of estrogens and antiestrogens
with enhanced tissue-selective activities.

The actions of estrogens are antagonized by antiestro-
gens, which bind to the ER in a manner that is competitive
with estrogen; but antiestrogens usually fail to effectively
activate gene transcription [21-25]. The structures of some
estrogens and antiestrogens are shown in Figure 1 and, as
can be seen, they include both steroidal and nonsteroidal
compounds. Antiestrogens typically have a basic or polar
side chain, and this side chain is essential for their anties-
trogenic activity. Antiestrogens are of particular interest and
utility because of their effectiveness in suppressing the es-
trogen-stimulated proliferation and metastatic activity of ER-
containing breast cancers [9-11, 13, 21-25].
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FIG.1. Structures of several estrogenic and antiestrogenic ligands for the estrogen
receptor. The antiestrogens include the nonsteroidal compounds tamoxifen and
LY117018 and the steroidal antiestrogen ICl164,384. '

ESTROGEN RECEPTOR
STRUCTURE-ACTIVITY RELATIONSHIPS

In order to better understand the bioactivities of estrogens
and antiestrogens and their differing interactions with the ER,
we have focused some of our studies on identifying the
regions of the ER that are involved in estrogen and antiestro-
gen binding and in discriminating between estrogen and an-
tiestrogen [26—31]. Since the hormone-binding domain of the
ER is large (more than 250 amino acids), analysis of its struc-
ture and its functional complexity is challenging. We have
used three approaches for studying estrogen receptor ligand-
receptor-response relationships, namely, affinity labeling [32]
site-directed mutagenesis, and region-specific chemical mu-
tagenesis of the hormone binding domain.

Many of our studies have analyzed in detail the hormone
binding domain of the estrogen receptor, regions E and F,
since this domain of the receptor contains both hormone
binding and hormone-dependent transactivation functions of
the receptor. In our attempts to understand how the receptor
discriminates between estrogen and antiestrogen ligands, we
have generated and analyzed variant human estrogen recep-
tors with mutations in the ER hormone-binding domain and
studied the activity of these receptors on different estrogen-
responsive genes in several cell backgrounds when liganded
with antiestrogenic or estrogenic ligands. These studies and
those of others [17—20] have provided consistent evidence for
the promoter-specific and cell-specific actions of the estrogen-
occupied and antiestrogen-occupied ER. In addition, al-
though the binding of estrogens and antiestrogens is mutually
competitive, studies with ER mutants indicate that some of the
contact sites of estrogens and antiestrogens are likely different
[29—31, 33]. Our recent studies also reveal that the presence
of the carboxy-terminal F domain of the ER is important in
the transcription activation and repression activities of anti-
estrogens and that it affects the magnitude of liganded ER
bioactivity in a cell-specific manner [18]. The influence of the

F domain on the agonist/antagonist balance and potency of
antiestrogens supports its specific modulatory role in the li-
gand-dependent interaction of ER with components of the
transcription complex. These studies ([18, 26—34], see below)
have provided evidence for a regional dissociation of the hor-
mone binding and transcription activation regions in domain
E of the receptor and have also shown that mutations in the
hormone binding domain and deletions of C-terminal regions
result in ligand discrimination mutants, that is, receptors that
are differentially altered in their ability to bind and/or mediate
the actions of estrogens versus antiestrogens.

A variety of studies [17-20, 26—35] have provided strong
documentation that the response of genes to estrogen and
antiestrogen depend on several important factors: 1) the na-
ture of the estrogen receptor, i.e., whether it is wild type or
variant; 2) the ligand; 3) the promoter; and 4) the cell con-
text. The gene response, in addition, can be modulated by
cAMP, growth factors, and agents that affect protein kinases
and cell phosphorylation [19, 36—40l. These factors, no
doubt, account for differences in the relative agonism/an-
tagonism of antiestrogens like tamoxifen on different genes
and in different target cells such as those in breast cancer
cells versus uterine or bone cells.

Although both estrogens and antiestrogens bind within
the hormone binding domain, the association must differ
because estrogen binding activates a transcriptional en-
hancement function, whereas antiestrogens fully or partially
fail in this role. Antiestrogens are believed to act in large
measure by competing for binding to the ER and altering
the conformation of the ER such that the receptor fails to
effectively activate gene transcription. In addition, antiestro-
gens exert antigrowth factor activities via a mechanism that
requires ER but is still not fully understood ([41-43] and
refs. therein). Models of antiestrogen action at the molecular
level are beginning to emerge, and recent biological studies
as well indicate that antiestrogens fall into at least two dis-
tinct categories: antiestrogens such as tamoxifen that are
mixed or partial agonists/antagonists (type I) and com-
pounds such as ICI164,384 that are complete/pure antago-
nists (type ID. The type I antihormone-ER complexes ap-
pear to bind as dimers to estrogen response elements; there,
they block hormone-dependent transcription activation me-
diated by region E of the receptor, but they are believed to
have little or no effect on the hormone-independent tran-
scription activation function located in region A/B of the
receptor [17]. Thus, they are generally partial or mixed ag-
onist/antagonists, and their action must involve some subtle
difference in ligand-receptor interaction, very likely asso-
ciated with the basic or polar side chain that characterizes
the antagonist members of this class. In the case of the more
complete antagonists such as ICI164,384, ER conformation
must clearly differ from that of the estrogen-occupied ER
since some differences in ER binding to DNA and reduction
of the ER content of target cells appear to contribute to
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[44, 45], but may not fully explain, the pure antagonist char-
acter of this antiestrogen [41, 42].

In order to understand how the ER “sees” an antiestrogen
as different from an estrogen, we have used site-directed and
regional chemical mutagenesis of the ER cDNA to generate
estrogen receptors with selected changes in the hormone
binding domain. We have been particularly interested in iden-
tifying residues in the hormone binding domain important for
the binding of estrogen and/or antiestrogen and for the tran-
sactivation functions of the receptor, and in elucidating the
mechanism by which the ER differently interprets agonistic
and antagonistic ligands. Our studies have indicated that se-
lective changes near amino acid 380 and amino acids 520-
530 and changes at the C-terminus of the ER result in ER ligand
discrimination mutants [18, 26, 29, 30]. These data provide ev-
idence that some contact sites of the receptor with estrogen
and antiestrogen differ and that the conformation of the re-
ceptor with estrogen and antiestrogen must also be different
as a consequence ([29, 33] and refs. therein).

Our observations [26, 31], as well as very important studies
by Malcolm Parker and colleagues [34, 46], have shown a sep-
aration of the transactivation and hormone-binding functions
of the ER with amino acids critical in the transactivation func-
tion of the receptor being more C-terminal in domain E (see
Fig. 2). Interestingly, some transcriptionally inactive receptors
with modifications in this domain E C-terminal activation func-
tion 2 (AF-2) region of the ER have potent dominant negative
activity, being able to suppress the activity of the wild-type
ER in cells [27, 28].

ESTROGEN RECEPTOR CROSS TALK WITH OTHER
CELL SIGNALING PATHWAYS

We have observed that protein kinase activators enhance
the transcriptional activity of the ER and alter the agonist/
antagonist balance of some antiestrogens, suggesting that
changes in cellular phosphorylation state should be impor-
tant in determining the biological effectiveness of the es-
trogen-occupied ER as well as the effectiveness of anties-
trogens as estrogen antagonists. Evidence for cross talk
between steroid hormone receptors and signal transduction
pathways has been increasing. Expression of activator pro-
tein (AP)-1, a transcription factor of the fos /jun heterodimer
known to mediate the protein kinase (PK)-C pathway [47],
was shown to suppress steroid hormone receptor-mediated
gene expression [48], most likely through direct protein-
protein interaction between steroid receptors and these on-
coproteins [49]. In addition, the ovalbumin gene promoter
containing a half-palindromic estrogen-responsive element
(ERE) was coactivated by ER and fos /jun oncoproteins [49—
52]. Thus, interaction between these oncoproteins and ste-
roid hormone receptors resulted in cell-specific inhibitory
or stimulatory effects on transcriptional activation [50].

Previous studies by us and others [36, 37, 39, 53, 54] doc-

Discrimination

E vs. AE Transactivation

Hormone
Binding

FIG.2. “Map” of functions in the human estrogen receptor hormone binding do-
main. Domain E, amino acids 302-553, is shown as is the very C-terminal domain
F, amino acids 554-595. Some regions considered to be important in hormone bind-
ing, discrimination between estrogen (E) and antiestrogen (AE), and transactivation
are highlighted. The ligand (L) is portrayed in a region representing the ligand bind-
ing pocket of the receptor. Open circles indicate amino acids in the hormone binding
domain where our analyses have shown mutational changes to affect the affinity
or stability of hormone binding. See text for description.

umented up-regulation of intracellular progesterone receptor,
an estrogen-stimulated protein, by insulin-like growth factor
(IGF)-1, epidermal growth factor, phorbol ester, and cAMP in
MCF-7 human breast cancer cells and uterine cells. The fact
that the stimulation by these diverse agents was blocked by
antiestrogen suggested that these agents were presumably
acting through the ER pathway (36, 39, 40, 53, 55]. In addition,
the fact that protein kinase inhibitors also blocked the effects
of estrogen, cAMP, and growth factors suggested the involve-
ment of phosphorylation in these responses. We therefore un-
dertook studies to examine directly whether activators of pro-
tein kinases can modulate transcriptional activity of the ER.
In primary cultures of uterine cells, using transient trans-
fection experiments with simple estrogen-responsive reporter
genes, we examined the ability of these agents to stimulate
ER-mediated gene transcription and also compared the ability
of these multiple agents to alter the phosphorylation state of
the endogenous uterine ER protein. The results of our study
[37] indicate that estrogen, IGF-1, and agents that raise intra-
cellular cAMP are able to stimulate ER-mediated transacti-
vation and ER phosphorylation. The fact that antiestrogen
(ICI1164,384) evokes a similar increase in ER phosphorylation
without a similar increase in transcription activation indicates
that an increase in overall ER phosphorylation does not nec-
essarily result in increased transcriptional activity. Also, the
observation that transcriptional activation by the ER was
nearly completely suppressed by the protein kinase inhibitors
H8 and PKI, while the increase in phosphorylation was re-
duced by 50—75%, indicates that the correlation between tran-
scriptional activation and overall ER phosphorylation is not
direct, but it does suggest that some of the effects of estrogen,
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FIG. 3. Model depicting protein kinase-estrogen receptor transcriptional syner-
gism. See text for description.

IGF-1, and cAMP on ER-regulated transactivation are mediated
through the activity of protein kinases. Our findings, dem-
onstrating a clear effect of these agents on ER-mediated tran-
sactivation, suggest that these agents might also regulate en-
dogenous estrogen target genes, such as that encoding the
progesterone receptor, by similar cellular mechanisms.

In order to examine some of the molecular mechanisms
controlling transcription of the progesterone receptor gene,
we cloned the rat progesterone receptor gene 5'-region and
identified two functionally distinct promoters [56l. The two
promoters in the rat progesterone receptor gene exhibited
differential responsiveness to estradiol and to ER-depen-
dent stimulation by cAMP. The functional differences be-
tween these two promoters may lead to altered expression
of the A and B progesterone receptor isoforms and, thereby,
influence cellular responsiveness to progestins [56].

In MCF-7 human breast cancer cells and other cells, we
found that activators of PKA and PKC markedly synergize
with estradiol in ER-mediated transcriptional activation and
that this transcriptional synergism shows cell- and pro-
moter-specificity [19, 38, 56): The synergistic stimulation of
ER-mediated transcription by estradiol and protein kinase
activators did not appear to result from changes in ER con-
tent or in the binding affinity of ER for ligand or estrogen
response element DNA but, rather, may be a consequence
of a stabilization or facilitation of interaction with target
components of the transcriptional machinery, possibly ei-
ther through changes in phosphorylation of ER or other pro-
teins important in ER-mediated transcriptional activation
[38]. Of interest also, we have observed that stimulation of
the PKA signaling pathway activates the agonist activity of
tamoxifen-like but not ICI164,384-like antiestrogens and re-
duces the effectiveness of tamoxifen as an estrogen antag-
onist [19]. These findings suggest that agents that enhance
intracellular cAMP, such as some growth factors, may con-
tribute to antiestrogen resistance because tamoxifen-like
antiestrogens will now be seen by the cell as weak ago-
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FIG. 4. Repression of ER-mediated transcriptional activity in uterine cells by li-
gand-occupied progesterone receptors (PRs). A) Schematic diagram of the
ERE,PRE,-Promoter-CAT reporter. B) Each 100-mm dish of rat uterine cells was
transfected with 500 ng of pRSV-hPRA {labeled PR A), 500 ng of pRSV-hPRB (PR B),
or 250 ng each of pRSV-hPRA and pRSV-hPRB (PR A+PR B), in addition to 10 ug
of ERE,PRE,-PRp,-CAT, 100 ng of pRSV-ER, and 3 pg of internal control plasmid
pCMVB. The cells were treated with one or more of the following as indicated for
24 h: control vehicle, E, {107 M), R5020 {10°® M), and RU486 (10”® M). The CAT
activity in each sample was determined. Each bar represents the mean + SEM for
three or more separate determinations. The fold induction in response to E, treat-
ment is indicated above the bars. (From Kraus et al. 1995, ref. [68].)

nists [19, 57]. Related observations have been made with
antiprogestins such as RU486 [58—60).

Figure 3 shows a model indicating how we think the
protein kinase-estrogen receptor transcriptional synergism
might occur. Agents influencing protein kinase pathways
may enhance intracellular protein phosphorylation, result-
ing in either phosphorylation of the ER itself or the phos-
phorylation of nuclear factors with which the receptor in-
teracts in mediating transcription. Likewise, there is
evidence that the steroid hormone itself can alter receptor
conformation, increasing the receptor’s susceptibility to
serve as a substrate for protein kinases [37, 61-64]. There-
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fore, agents that increase phosphorylation may, either
through phosphorylation of the ER itself or through phos-
phorylation of nuclear factors required for ER transcription,
result in synergistic activation of ER-mediated transcription.

In direct studies on ER phosphorylation, we have shown
that estradiol, the antiestrogens trans-hydroxy-tamoxifen and
ICI164,384, as well as PKA and PKC activators enhanced
overall ER phosphorylation [63]. Tryptic phosphopeptide pat-
terns of wild-type and domain A/B-deleted receptors and
site-directed mutagenesis of several serines involved in
known protein kinase consensus sequences allowed us to
identify serine 104 and/or serine 106 and serine 118—all
three being part of a serine-proline motif—as major ER phos-
phorylation sites. Mutation of these serines to alanines so as
to eliminate the possibility of their phosphorylation resulted
in an approximately 50% reduction in transactivation activity
in response to estradiol while mutation of only one of these
serines showed an approximately 15% decrease in transac-
tivation [63]. Of note, estradiol and antiestrogen-occupied es-
trogen receptors showed virtually identical two-dimensional
tryptic phosphopeptide patterns suggesting similar sites of
phosphorylation. In contrast, the cAMP-stimulated phos-
phorylation likely occurs on different phosphorylation sites
as indicated by some of our mutational studies [60]; this as-
pect remains under investigation in our laboratory. Related
studies in COS-1 cells by the Chambon laboratory [61] also
identified serine 118 as being a major estrogen-regulated
phosphorylation site. In MCF-7 cells, the Notides laboratory
has also identified serine 118 as a site of ER phosphorylation
but has observed serine 167 to be the most prominent site
of phosphorylation in these cells [65]. Aurrichio and cowork-
ers [66] have also provided strong evidence for ER phos-
phorylation on tyrosine 537. The roles of these phosphory-
lations in the activities (transcriptional and other) of the ER
remains an area of great interest.

CROSS TALK BETWEEN ESTROGEN RECEPTOR AND
PROGESTERONE RECEPTOR SIGNALING SYSTEMS IN
MODULATION OF BIOLOGICAL RESPONSES

In addition to interactions with the signaling pathways
described above, the ER also has important interrelation-
ships with the progesterone receptor (PR) system in mod-
ulation of responses. This has been well documented bio-
logically in many estrogen target tissues. In the uterus, for
example, estrogens increase c-fos mRNA, cell proliferation,
progesterone receptor mRNA and protein levels, gap junc-
tion formation, myometrial contractility, and oxytocin re-
ceptors, and these effects are largely antagonized by pro-
gesterone ([12, 56, 67, 68] and references therein). The PR
is now known to exist as two isoforms in most species, a
smaller A form (PR-A) and a larger B form (PR-B); PR-B
contains an N-terminal extension of approximately 164

A) Stimulation of Transcription by Liganded ER

PRE

PRE

FIG. 5. A model for the repression of ER-mediated transcriptional activity by ag-
onist- and antagonist-occupied PRs. Our findings support a model in which the
repression of ER transcriptional activity by liganded PR occurs by quenching. Ac-
cording to this model, liganded PR binds to a site (PRE) distinct from the binding
site for ER (ERE) and interferes with the ability of ER to make productive contact
with the transcriptional complex. Differences in the magnitude of repression ob-
served for agonist- and antagonist-occupied PRs suggest that agonist-occupied PR
only quenches ER-transcription factor interactions that involve the activation func-
tion-1 of ER or a promoter-specific component of the ER signaling pathway (PSF),
while antagonist-occupied PR quenches a wider range of the ER-transcription factor
interactions that occur at the promoter. The individual components of the sche-
matics are labeled. The abbreviations are: AP, antiprogestin; E, estrogen; ER, estro-
gen receptor; ERE, estrogen response element; P, progestin; PR, progestin receptor;
PRE, progestin response element; PSF, promoter-specific factor; TF/Pol Il Complex,
general transcriptional machinery. (From Kraus et al., 1995, ref. [68]}.
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INTRODUCTION

The selective action that steroid hormones and the
hormones for the other nuclear receptors have in dif-
ferent tissues and on different responses is well
known. In fact, this recognized selectivity forms the
basis for major efforts, currently underway in the phar-
maceutical industry and at universities, toward the
development of new, synthetic hormones whose pro-
file of desired activities is optimized for specific ther-
apeutic and preventative applications. This commen-
tary will examine the pharmacological mechanisms
that underlie this selectivity.

The study of steroid hormone pharmacology poses
particular challenges. In vivo, many steroids have
pleiotropic activity, displaying a variety of effects in
different tissues. Even in cell-based in vitro systems,
attempts to investigate the molecular basis for steroid
hormone action and the selectivity of this action are
confounded by the fact that the genomic responses
elicited by these ligands can be both primary and
secondary (i.e. cascade) responses. In the latter situ-
ation, the correlation between molecular interaction
and response is complex and indirect; this makes it
difficult to clearly determine what interactions define
the pharmacological parameters of potency and bio-
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character (biological character, i.e. agonist vs. antag-
onist activity) of a specific hormone. Even the genomic
actions vary: most involve direct receptor-DNA inter-
action, but some appear to be mediated via interaction
of receptor with other DNA-binding proteins. Steroid
hormones may also exert nongenomic effects, some
of which may still involve the receptor. In this com-
mentary, we are focusing on the genomic action of
steroid hormones that involves the regulation of gene
transcription mediated by nuclear receptors.

THREE MECHANISMS FOR STEROID HORMONE
SELECTIVITY

The selectivity that steroid and other hormones for
nuclear receptors display at three different levels—the
tissue, the cell, and the gene—may be mediated by
three distinct mechanisms (Table 1): 1) ligand-based
selectivity, 2) receptor-based selectivity, and 3) effec-
tor site-based selectivity. Since the first two mecha-
nisms are well recognized, they will be described only
briefly; the third mechanism merits careful examina-
tion and will be discussed in greater detail. '

Ligand-Based Selectivity

By this mechanism, selectivity at the tissue or cell level
may be achieved by differences in pharmacokinetics
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Table 1. Types of Selectivity in the Action of Ligands for Nuclear Hormone Receptors

Components Level of Selectivity
Type of selectivity Mechanism
Ligand Receptor Effector Tissue Cell Gene

Ligand-based Different Same Same Yes Yes No Ligand(s) undergoes different metabolism in
different tissues/cells (selective bioactivation;
selective bioinactivation)

Receptor-based Same Different Same Yes Yes No Composition of receptors (concentration,
subtypes, isoforms, variants) is different in
different tissues/cells

Effector-based  Same Same Different Yes Yes Yes The same ligand(s) and same receptor(s)

experience different interactions at different
effector sites regulating gene transcription

or differential ligand metabolism. The same hormone
or set of hormones is presented to different target
tissues through the circulation, but their relative
amounts within the cell are altered by differential up-
take or metabolism—at the level of the target tissue
cell. The differential metabolism mechanism may in-
volve either a bioactivation, such as the tissue-selec-
tive conversion of the naturally circulating androgen
testosterone to the more potent 5«-dihydrotestoster-
one by the action of 5a-reductase (1), or a bioinacti-
vation, such as the selective oxidation of cortisol, but
not aldosterone, by an 118-dehydrogenase found in
tissues that respond to mineralocorticoids (2). Thus,
this differential metabolism creates a ligand-based se-
lectivity in which the same receptor in different target
tissues or cells can experience a different complexion
of hormones and thereby mediate responses in a se-
lective manner (cf. Table 1).

Receptor-Based Selectivity

By the second mechanism, different target tissues
experiencing the same hormones may respond in a
selective fashion because they have a different com-
position of receptors. This difference could include
variations in the concentrations or ratios of receptor
subtypes, isoforms, or splice variants or receptors
having different states of covalent modification (e.g.
phosphorylation) (Refs. 3-5 and references cited
therein). This mechanism is especially well repre-
sented in the retinoid, thyroid hormone, and vitamin D,
receptor systems, where multiple receptor forms are
found, and different patterns of receptor dimerization
are known to be dependent upon both the structure
and composition of the ligands and the response ele-
ments (6, 7). It appears to be important in the proges-
terone receptor system, where progesterone receptor
A and B isoforms are known to differ in their ability to
activate genes (8). Additionally, progesterone receptor
A can act as an inhibitor of progesterone receptor B
transcriptional activity (9—11). Receptor-based selec-
tivity may also play a role among androgen receptors
and glucocorticoid receptors, where two isoforms
have been reported (12, 13), and even in some estro-

gen-responsive cells where full length estrogen recep-
tor and splice variants may coexist (14-18). In these
systems, the same hormone or set of hormones could
effect tissue- or cell-selective action as a result of the
different complexion of receptors present in different
target sites (cf. Table 1).

Effector Site-Based Selectivity

Although the former two mechanisms may explain
some of the tissue- and cell-selective actions of ste-
roid and related hormones, the selectivity of these
hormones clearly also derives from a deeper level.
Even in cases where there seems to be no differential
hormone metabolism in target tissues and only a sin-
gle receptor is involved (i.e. mechanisms 1 and 2 are
not operating), hormones for nuclear receptors are
capable of selective action. Most striking is the differ-
ent biocharacter that some estrogens and their ana-
logs show in terms of certain responses elicited in
different target tissues.

For example, in the rat, we have shown that the
antiestrogens tamoxifen, nafoxidine, and CI-628 are
partial agonists/antagonists in the modulation of pitu-
itary PRL and dopamine turnover in the medial basal
hypothalamus (19) and of various responses in the
uterus (uterine weight gain, progesterone receptor in-
duction, and plasminogen activator and peroxidase
activity stimulation) (20-23), yet they are full agonists in
increasing plasma renin substrate in liver (24). In
women, raloxifene (originally called keoxifene) shows
tissue-selective differences, with strong agonist activ-
ity indicated by maintenance of bone density and es-
trogenic blood lipid profiles, but little stimulation of the
uterus (25-30). Tamoxifen therapy in postmenopausal
women with breast cancer has also revealed estrogen-
like actions of this agent on bone mineral density (31)
and lipoprotein levels (32), as well as estrogen-like
stimulation of the uterus (33-35), yet little agonism
occurs in the breast, where tamoxifen reduces recur-
rence of breast cancer (36). In contrast, the estradiol-
based antiestrogens 1Ci164,384 and 1CI182,780 have
almost complete antagonist character in all estrogen
target tissues examined, both in experimental cell and
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animal systems and in clinical trials in women (37, 38).
Regardless of their varying level of agonist or antag-
onist character in different tissues, these compounds
appear to be acting through a single receptor, the
estrogen receptor.

The study of the molecular details of steroid hor-
mone pharmacology has been assisted greatly by
the development of transient transfection assays,
whereby one can achieve independent control over
four critical variables, the ligand, the receptor, the
gene context, and the cellular milieu. Transfection of
estrogen-responsive promoter-reporter  constructs
into different cells has enabled the regulation of spe-
cific genes to be studied in these different cell back-
grounds. However, one should keep in mind that hor-
monal regulation of transfected gene constructs does
not always precisely mimic that observed in the native
gene context, as local chromatin architecture may be
different (39, 40). Nevertheless, the results of these
investigations illustrate clearly that cell-specific factors
can affect the biocharacter (agonist/antagonist bal-
ance) of different estrogens.

In studies in several cell types with either wild type
or variant estrogen receptors lacking their C-terminal F
domains (AF), we have observed that the response of
these receptors to estrogen and antiestrogen ligands
is markedly influenced by cell context (41). For exam-
ple, in Chinese hamster ovary (CHO) cells and MDA-
MB-231 human breast cancer cells expressing wild
type or AF estrogen receptors, estradiol stimulated
equally transcription of several estrogen-responsive
promoter reporter gene constructs. By contrast, in
HeLa human cervical cancer cells and 3T3 mouse
fibroblast cells, the AF estrogen receptor exposed to
estradiol was much less effective than wild type es-
trogen receptor in stimulating transcription, and an-
tiestrogens were less potent in suppressing estrogen-
stimulated transcription by the AF estrogen receptor.
These differences in response of the AF and wild type
estrogen receptor to estrogen or antiestrogen do not
appear to be due to a change in receptor expression
leve!, binding affinity for ligands, or binding to estrogen
response element DNA. Rather, our data support the
supposition that the conformation of the receptor-
ligand complex is different with estrogen vs. antiestro-
gen and with wild type vs. AF estrogen receptor, such
that its potential for interaction with protein cofactors
or transcription factors is different and is markedly
influenced by cell context (41). Likewise, studies by
McDonnell and co-workers (42, 43) have provided ex-
tensive documentation of the fact that cell background
profoundly influences estrogen receptor transcrip-
tional response to ligand. Several groups have shown
as well that the transcriptional response of progester-
one receptor A and B isoforms to progestin ligands is
greatly influenced by the test cell used, as is the ability
of progesterone receptor to repress estrogen receptor
transcriptional activity (44, 45). This very likely reflects
the differing activities of the different activation func-
tions (AF-1, AF-2, and others) in a receptor, a concept
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nicely documented by Berry et al. in 1990 (46) for the
estrogen receptor to explain the differing agonist/an-
tagonist activity of tamoxifen in different cells (see
below).

Even within the same cell, it is possible to effect
selective stimulation of different endogenous genes
with different ligands. For example, in estrogen recep-
tor-containing MCF-7 human breast cancer cells, an-
tiestrogens such as tamoxifen are pure antagonists for
plasminogen activator activity (47, 48) but show weak
agonism for other responses, such as pS2 (39) and
progesterone receptor induction (47, 49). By transfect-
ing estrogen-responsive promoter-reporter constructs
into these (MCF-7) cells, it has been shown that an-
tiestrogens exhibit promoter-specific agonism (50).
This promoter-specific agonistic activity of antiestro-
gens is also observed when these estrogen-respon-
sive promoters are transfected, along with wild type
estrogen receptor, into a variety of estrogen receptor-
negative cells (41, 42). Further evidence for gene-spe-
cific agonist and antagonist properties of tamoxifen
and other antiestrogens is evident from studies in GH4
and GC3 pituitary tumor cells, where these com-
pounds act like a full estrogen on some responses yet
as an antagonist of estrogen stimulation of other re-
sponses (51, 52).

The phenomenon of promoter-specific agonism is
particularly well highlighted by the observations made
in bone cells with antiestrogens using two different
estrogen receptor-dependent responses. Here, ralox-
ifene, a benzothiophene compound typically consid-
ered an antiestrogen, tamoxifen, and |Cl 164,384 are,
in fact, stronger agonists of transforming growth fac-
tor-B3 (TGFB3) promoter activity than estradiol. By
contrast, in the same MG-63 osteosarcoma cell cul-
tures, all three ligands act as pure antagonists of the
dramatic stimulation of the reporter gene construct
estrogen response element-vitellogenin-chloram-
phenicol acetyl transferase by estradiol (53, 54). Inter-
estingly, the nucleotide sequences comprising the es-
trogen response elements in these two genes (T GFB3
and vitellogenin) are quite different, vitellogenin con-
taining a palindromic consensus estrogen response
element and TGFB3 quite a different nucleotide se-
guence; only the former was shown to bind the estro-
gen receptor in gel shift assays. The DNA-binding
domain of the estrogen receptor appears not to be
required for raloxifene induction of the TGFB3 gene.
Since the estrogen receptor does not bind directly to
this unusual estrogen response element, an additional
DNA-binding protein that tethers estrogen receptor to
this enhancer is implied (54). Thus, at least some of the
proteins interacting with the ligand-receptor complex
at these two promoters would be predicted to be
different, to account for the reversed pharmacology
displayed by these estrogen receptor ligands at these
two genes.

As was mentioned earlier, these findings are also
mirrored in tissue-specific differences in the estrogen
agonist/antagonist character of these compounds in
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vivo. Tamoxifen and raloxifene are strong estrogen-
like agonists for bone density maintenance in rats and
women. They have either some (tamoxifen) or little to
no (raloxifene) stimulatory effect on uterine prolifera-
tion, yet they are full antagonists of estrogen-stimu-
lated breast cancer cell proliferation and responses
such as induction of plasminogen activator activity in
breast cancer cells. These observations indicate that
these ligands are “selective estrogen receptor modifi-
ers” (27, 30), displaying estrogen agonist or antagonist
activity that is dependent on the particular cell and
gene endpoint.

Such observations form the basis for efforts cur-
rently being directed at the development of tissue-
selective estrogen/antiestrogen agents with specific
profiles optimal for treatment of women with breast
cancer and for postmenopausal bone loss (osteopo-
rosis) prevention: no agonism on breast or uterus;
estrogen agonism on bone (for good bone mainte-
nance), the cardiovascular system, and some aspects
of liver function (such as blood lipid profile). Such
compounds would exploit what is now known about
the gene- and cell-selective actions of hormonal li-
gands and the importance of effector site components
in a ligand’s pharmacological profile (see below). Thus,
in some systems, the same ligand working through a
single receptor can elicit a different spectrum of re-
sponses from different genes in hormone-responsive
cells (cf. Table 1). These gene-selective actions cannot
be readily explained by either of the first two mecha-
nisms (see above).

EVOLVING MODELS FOR THE ROLE OF THE
RECEPTOR IN STEROID HORMONE ACTION—
MOLECULAR INTERACTIONS THAT DEFINE
POTENCY AND BIOCHARACTER

The Pharmacology of Classical Bipartite (Ligand-
Receptor) Systems

The development of the concept of “receptors” in
classical pharmacology arose from the need to pos-
tulate a molecular species that served as the interface
between a drug or hormone and the behavioral or
physiological responses that it evoked. The original
receptor concept, conceived by Ehrlich (55) and Lan-
gley (66), formalized by Clark (57) and Gaddum (58),
and refined by Ariéns and Simonis (59) and Stephen-
son (60) was basically an operational one. Neverthe-
less, it permitted the different dose-response relation-
ships displayed by various drugs and hormones to be
related to a hypothesized molecular interaction that
these species had as ligands for the receptor. The
activity of these ligands could then be interpreted in
terms of the pharmacological parameters “potency”
and “biocharacter”: potency, measured as the median
efficacy (ECs,, or median inhibition, IC5), was related
to the ligand’s affinity for the receptor; biocharacter
(i.e. agonist vs. antagonist character), estimated by the
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degree to which this binding resulted in activation of
the receptor to elicit a response, was related to the
ligand’s efficacy or intrinsic activity.

At an operational level, the receptor was considered
to represent the interface where the molecular inter-
actions with the ligand ceased and the biological re-
sponses began. In such a bipartite model, involving
only the ligand and the receptor, the ligand plays a role
much like that of an allosteric effector of an enzyme,
altering the conformation of the receptor and thereby
directly altering its capacity to elicit the response. The
conceptual features of such a bipartite scheme are
illustrated in Fig. 1. The key issue is that the receptor
itself embodies two functions, the capacity to bind a
ligand and the capacity to initiate or effect a response
as a direct consequence of that binding. The implica-
tions of the bipartite model are subtle but important:
since the ligand is controlling the shape and the func-
tion of the receptor directly, one can assign to each
ligand a unique characteristic potency and biocharac-
ter (Table 2).

The Identification of Steroid Receptors and Their
Genomic Action

The preparation of high specific activity radiolabeled
steroid hormones more than 3 decades ago led to the
identification of specific, high affinity binding proteins
in target tissues for steroid hormones (61). Since the
binding affinity that these proteins showed for various
ligands reflected the biological potency of these li-
gands quite accurately, the binding proteins were

BIPARTITE (CLASSICAL) RECEPTOR PHARMACOLOGY

Ligand Receptor Ligand Receptor Response/
Complex Biocharacter
full
(agonist)
partial

(partial agonist)

none
(antagonist)

...... Interaction : Response . . . . . .
(potency) : (biocharacter)

Fig. 1. Classical Bipartite (Ligand-Receptor) Pharmacology
This simple conceptual scheme illustrates how the re-
sponse to a hormone might be mediated by a bipartite inter-
action between the hormone, acting as a ligand (L) and a
receptor (R). In such a bipartite system, the effect of each
hormonal ligand is determined directly by the nature of its
interaction with the receptor. Thus, unique potency and bio-
character descriptors can be assigned to each hormone.
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Table 2. Pharmacology in Bipartite vs. Tripartite Receptor Systems

Pharmacological characteristic Bipartite scheme

Tripartite scheme

Potency (ECso, ICs0)
L-R interaction

Biocharacter (efficacy,
intrinsic activity)
itself

Unigueness of
pharmacological
characteristics

Determined by the affinity of the

Determined by effectiveness the
conformation of the L-R complex

Potency and biocharacter can be
uniquely assigned to each ligand

Determined by both L-R binding affinity and L-R
coupling with effectors

Determined by both shape of the L-R complex and
the effectiveness of its coupling with various
effector sites

Potency and biocharacter are effector dependent;
they are not inherent characteristics of a ligand,
and cannot be assigned without reference to a
particular response

soon referred to as “receptors.” Results from other
biochemical studies elucidated the principal action of
steroids as the activation of gene transcription (for
example, Refs. 62-66). The role of these binding pro-
teins as receptors, linking the binding interaction of the
steroid with the biochemical response of transcription
activation, still appeared to be clear. Nevertheless, it
was evident even then that there would be other mo-
lecular elements within the cell with which the ligand-
receptor complex would need to interact in order for
the effect—the transduction of the signal—to continue
(67, 68).

In the most recent decade, great strides have been
made in determining the structure of these receptors
and in elucidating the details of their action. They are
multidomain proteins that engage in multiple interac-
tions in the process of eliciting their genetic transcrip-
tional activation or repression responses. In some
cases they interact with themselves as homodimers or
with other related receptor partners as heterodimers.
At each regulated gene, these receptors may interact
with DNA via response elements of varying sequence
and distribution, with transcription factors and other
components of the general transcription apparatus,
and with various other activator and adaptor (co-acti-
vator and co-repressor) proteins that are associated
with the transcriptional regulation of that particular
gene (reviewed in Refs. 69-73).

This proliferation of molecular constituents that link
ligand to response necessitates a reexamination of the
simplistic application of the term “receptor” to this
intracellular ligand-binding protein. In fact, in the nu-
clear receptor signal transduction cascade, it is no
longer so clear where the effect of ligand “interaction”
ceases and the biological “response” begins, and
thereby just what molecular entity or entities linking
interaction and response merits the appellation “re-
ceptor” in the classical pharmacological sense. The
“interaction” by which a ligand effects a response in
the steroid hormone system is clearly a multipartite
phenomenon, one that is much more complex than the
bipartite interaction originally envisioned as simply the
binding of a hormone to a receptor protein. The pro-
liferation of such terms and phrases as “cell and pro-
moter context,” “gene-specific effects,” “intracellular

receptor pharmacology,” “post-receptor events in li-
gand discrimination,” or the “different biology of vari-
ous receptor-ligand complexes” to describe steroid
hormone pharmacology is a reflection of the inade-
quacy of the current use of the classical terms “ago-
nist,” “antagonist, ” and “receptor” to describe the
selective action of hormones at the level of the cell and
gene.

The Tripartite (Ligand-Receptor-Effector)
Systems

A tripartite scheme that embodies elements which
seem more appropriate to describe steroid hormone
molecular pharmacology is shown in Fig. 2 (Table 2).
Whereas the bipartite scheme (Fig. 1) embodied the
ligand binding and the response initiation functions in
one entity, in the tripartite scheme these functions are
assigned to separate entities—ligand binding to the
receptor, and response initiation to the effector. Thus,
where there were two partners that defined pharma-
cology, there are now three: the ligand, the receptor,
and the effector.

Tripartite or ligand-receptor-effector schemes were
proposed some time ago for certain other signal trans-
duction systems, and more recently even for some
glucocorticoid receptor-mediated responses (73a),
especially those that showed a discordance between
ligand potency in response stimulation (measured as
the ECs,) and ligand binding to receptor [measured as
the dissociation constant (Kg)]. For example in the
“spare receptor” hypothesis, the effector was pro-
posed as a response-limiting step beyond the recep-
tor that could account for this potency/binding dis-
junction (74-77). Many of these systems are now
known to be tripartite in reality. For example, the ac-
tion of extracellular ligands on transmembrane G pro-
tein-coupled receptors results in second messenger
induction via G protein activation that operates
through intracellular sites (78). More recently, the ac-
tion of immunosuppressants in T cells has been shown
to be tripartite; it begins with the binding of the immu-
nosuppressants by immunophilins and then proceeds
with the interaction of this complex, as a composite
ligand, with the phosphatase calcineurin (79). What is
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DIFFERENT MODES OF NUCLEAR RECEPTOR
ACTIVATION OF GENES

EFFECTOR EFFECTOR EFFECTOR
SYSTEM 1 SYSTEM 2 SYSTEM 3

HRE

w////8/7//4

Receptor HRE independent,
transcription

factor mediated

HRE dependent,
direct

HRE dependent,
adaptor mediated

RESPONSE

+ + —

+H+ + +

Fig. 2. Tripartite (Ligand-Receptor-Effector) Pharmacology

The response to a hormone is mediated by a tripartite interaction involving the ligand, the receptor, and effector sites through
which the ligand-receptor complex regulates the response. The top of this scheme illustrates three different modes for nuclear
receptor activation of genes; for each mode, an optimal ligand-receptor-effector combination is shown. The bottom of the scheme
illustrates the activity that each of the three ligand-receptor complexes might have at each of the three effector sites. Note that
the receptor adopts a different conformation in its complex with the three ligands and that these different “shapes” affect the
nature of the receptor-effector coupling. In a tripartite scheme, the potency of a ligand is determined largely by its affinity of
interaction with the receptor, but its biocharacter is determined by the interaction that the ligand-receptor complex has with
various effector sites. Therefore, for each receptor, the biocharacter (and to some degree the potency) of a hormone cannot be
uniquely assigned without reference to a specific response and effector interaction. Other modes of nuclear receptor gene
activation than the three illustrated here, such as the remodeling of nucleosomal and chromatin architecture by hormone receptor
complexes, have been identified. However, for simplicity, only three are shown here as examples.

unusual about the tripartite nature of the nuclear hor-
mone receptor system is that there appears to be an
unusual number and variety of effectors; this might
well be the hallmark of pleiotropic response systems.

The pharmacological implications of the tripartite
model are significantly different from the bipartite
model. In the bipartite model (Fig. 1 and Table 2), a
single interaction, the binding of ligand by receptor,
directly regulates receptor function and thereby deter-
mines both the potency and the biocharacter of the
ligand. By contrast, ligand potency and ligand bio-
character are determined through two. different inter-
actions in the tripartite scheme (Fig. 2 and Table 2). In
the first interaction, ligand binds to receptor to form a
complex, and the affinity of this binding is a principal
determinant of ligand potency. However, this ligand-

receptor interaction alone does not control the re-
sponse and therefore is not a direct determinant of
ligand biocharacter. The pharmacological nature of
the ligand, its biocharacter and its potency, is only fully
established through the second interaction. This cou-
pling, which occurs between the ligand-receptor com-
plex and the third partner, the effector, is an interaction
that has both an affinity and an efficacy dimension.

The Nature of Effectors for Nuclear Receptors

In the nuclear hormone receptor systems, the effector
site represents the aggregate of all the other compo-
nents with which the ligand-receptor complex inter-
acts at each regulated gene. Thus, the effector is
obviously complex. It is made up of elements common
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to all genes, as well as elements unique to each cell
and to each gene, even in systems like the estrogen
receptor where only a single receptor exists. The nu-
clear components that define effector-site selectivity
are not well understood at present. Nevertheless, they
may be grouped into several classes, three of which
are illustrated in Fig. 2.

In most cases, the coupling between the receptor
and effector involves direct interaction with DNA
through hormone response elements, which at various
genes may be consensus, nonconsensus, single, mul-
tiple, half-sites, etc.; DNA sequences flanking the re-
sponse elements, which are known to affect receptor
binding affinity, also differ in various responsive genes.
For the most part, sequences that bind receptors with
high affinity act as tethering sites for these potent gene
activators. In certain instances such as the proliferin
gene, upstream binding to a specific sequence ap-
pears to favor a conformationally inactive form of the
glucocorticoid receptor and may be operationally de-
fined as a negative glucocorticoid response element
(80).

After binding to their cognate response elements, a
number of receptors appear to touch the general tran-
scription factor complex (GTFs) located at the TATA
box (cf. Fig. 2, effector system 1) (81-83). Although
TFIID may be a target for certain receptors, the pre-
ferred partner of progesterone, estrogen, thyroid hor-
mone, vitamin D, receptors, and COUP-TF often ap-
pears to be TFIIB, a rate-limiting component whose
presence appears requisite for drawing RNA poly-
merase (and TFIIF) to the promoter (84). At this level,
both positive and negative associations have been
predicted for receptors with TFIIB. For example, un-
occupied thyroid hormone receptor touches TFIB at
two distinct regions; one of these interactions has
been hypothesized to be repressive, to explain the well
described silencing activity of ligand-free thyroid hor-
mone receptor at certain genes (82). Thyroid hormone
binding to thyroid hormone receptor inhibits this re-
pressive interaction. Nevertheless, effector site inter-
actions appear to be of even greater complexity.

Experimental evidence has predicted the existence
of adaptor proteins that may act as either coactivators
(85, 86) or corepressors for nuclear receptors (cf. Fig.
2, effector system 2). In transfected cells, the ability of
activated estrogen receptor to suppress or “squelch”
the transcriptional capacity of activated progesterone
receptor has been interpreted to result from their com-
petitive interactions with limiting concentrations of a
putative cellular coactivator (87-89). Recently, this hy-
pothesis has been substantiated by the identification
and cloning of a general steroid receptor coactivator
(SRC-1), which fulfills many of the criteria that have
been preassigned to such a molecule, i.e. it enhances
ligand-induced gene activity (up to 10-fold) without
altering basal transcription levels, and it can reverse
interreceptor squelching when transfected into a cell
with two active receptors (90). SRC-1 appears to exist
in two isoforms and its mRNA is present in all cells. It
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specifically interacts with the C-terminal activation do-
main (AF-2) of receptors in a ligand-dependent man-
ner but functions with all steroid/thyroid/retinoic acid
receptors tested to date. This coactivator is inactive
with receptors bound to pure antagonists but has
been shown recently to enhance mixed agonist/antag-
onist activation of ER as well as ligand-independent
activation of receptor by dopaminergic agonists and
growth factors. Other potential adaptor proteins that
interact with steroid receptors in a ligand-regulated
manner, termed receptor-associated proteins (RAPS)
or receptor-interacting proteins (RIPS), have been
identified, although none have been proven yet to
function as transcriptional coactivators. Cells with an
abundance of coactivator should have a more pro-
nounced response to a limiting concentration of re-
ceptor. It is clear that receptor-coactivator interactions
are an important part of the tripartite response system
at the gene level and can play a major role in quanti-
tative aspects of cell response.

Elucidation of the molecular interactions of SRC-1
and other coactivators with receptor should advance
our understanding of the mechanism of antagonist
action. Previous experimental evidence has indicated
that agonist- and antagonist-bound receptors exist in
distinct conformations (91, 92). Interestingly, agonist-
bound receptor binds efficiently to coactivator in vitro
and in vivo, but the antagonist-bound receptor does
not bind coactivator. Such differential interactions are
illustrated by the varying activities postulated for the
different ligand receptor complexes with effector sys-
tem 2 (Fig. 2, bottom) and suggest that antagonist
action has its origin at two levels, that of ligand-in-
duced receptor conformation and that of receptor-
effector interaction at the genetic level (see below). In
such a scheme, antagonist-bound receptor occupies
available hormone response elements in the cell, but
its conformation does not allow productive interac-
tions with coactivators or the general transcription
factor apparatus at the core promoter (TATA box).

Recent data suggesting the existence of a corepres-
sor(s) for the thyroid hormone receptor (and retinoic
acid receptor) add an additional twist (93, 94). Unoc-
cupied nuclear thyroid hormone receptor has been
reported to silence target gene activity (95, 96). Pre-
sentation of thyroid hormone (T;) reverses silencing
and produces a stimulation of transcription. It has
been proposed, using reverse squelching experiments
to relieve silencing, that a soluble corepressor in target
cells binds to unoccupied but not ligand-bound recep-
tor, thus aiding in the thyroid hormone receptor-in-
duced repression of basal transcription at select target
genes (93). Recently, two “corepressor” molecules ap-
pear to have been cloned in their entirety and seem to
fulfill the expected criteria, i.e. selective silencing,
which is dependent on unoccupied thyroid hormone
receptor or retinoic acid receptor (97, 98). In fact, it is
likely that multiple coactivators and corepressors will
be shown to be operative in celis. More than one
agonist-dependent receptor interactive protein has
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been reported already (99-105). Although the full con-
sequences of such interactions are not clear at
present, an ever increasing level of compiexity is
evolving at the effector stage of hormone response.

Perhaps the most influential aspect of promoter
context or gene-specific response to a ligand is the
array of other transcription factors present at a given
gene. Although there is evidence for certain promoter-
specific factors, the bulk of interactive regulation ap-
pears to occur upstream of the transcription start site
at multiple enhancers. It is well known that two recep-
tor dimers bound to the 5'-flanking sequence of a
target gene can result in transcriptional synergy (106).
This also applies to mixes of receptors and other com-
patible DNA-bound transcription factors, since a num-
ber of synergistic (and antagonistic) interactions have
been reported among steroid receptors and unrelated
transcription factors (72, 73, 73a, 107). Not surpris-
ingly, the mix of receptors with certain transacting
factors located at critical positions upstream of
the promoter also may result in transcriptional inter-
ference.

A number of laboratories have suggested that inter-
active regulation between transcription factors can oc-
cur in cells even in the absence of DNA binding. For
example, transcription factor AP-1 can promote active
(or positive) influences on receptors independent of
their DNA binding. Interactions in the nucleoplasm
may occur or AP-1 (fos/jun) may bind to its regulatory
element at a gene and serve as a docking site for a
steroid receptor via protein-protein interaction (108)
(cf. Fig. 2, effector system 3). Likewise, in some target
genes with unusual estrogen-inducible enhancers,
such as c-myc (109), creatine kinase (110), cathepsin
D (111), and the protooncogene c~jun (112), receptor
association with other known (such as transcription
factor Sp1) or as yet unidentified DNA-binding pro-
teins appears to facilitate receptor interaction with the
enhancer. Receptor-mediated gene repression also
may occur via protein-protein interactions among
transcription factors. For example, glucocorticoid re-
ceptor down-regulation of certain genes regulated by
the transcription factors AP-1 or NFkB may occur via
interactions between such regulators and the glu-
cocorticoid receptor in the absence of DNA binding
(113). Finally, nuclear proteins may interact directly
and specifically with receptor molecules to antagonize
their binding to DNA. Examples of such proteins are
calreticulin, which antagonizes steroid receptors (114),
and thyroid hormone receptor uncoupling protein
(TRUP), which antagonizes thyroid hormone receptor
and retinoic acid receptor (115).

Finally, it is worth noting that chromatin structure of
genes in their native context provides a significant
barrier for receptor to overcome in transcriptional reg-
ulation (40, 72, 116, 117). Nucleosomal repression of
gene activation must be reversed by receptors, and
selected nuclear helper proteins (e.g. SWI, SWE, SNF,
Sin, etc.) may play important roles in the chromatin
remodeling that appears to coincide with induction of
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transcription. In any event, it is certain that a diverse
spectrum of interactions can occur at an effector site
and that this complexity may represent a mechanism
whereby promoter context and cell specificity of re-
sponse can be generated.

Pharmacology in Tripartite (Ligand-Receptor-
Effector) Systems

In Fig. 2, we have laid out three tripartite schemes to
illustrate the types of molecular interactions that may
be operating in the activation of gene transcription by
nuclear hormone receptors. Through this figure, we
also have attempted to represent the combinatorial
complexity that can arise as a result of the second
interaction, between the ligand receptor complex and
the effector. The interactions at the top of Fig. 2 illus-
trate the optimal interaction that might occur between
three distinct effector systems and three different li-
gand receptor complexes, each formed from the same
receptor with three different types of ligands; shown is
the fact that each ligand-receptor complex has a dis-
tinct conformation. At the bottom of Fig. 2, we attempt
to show the consequence—in terms of signal trans-
duction—of the distinct interaction that each of these
ligand-receptor complexes might have with all three of
the effector systems. While this iliustration is obviously
limited and simplified (see previous section “The Na-
ture of Effectors for Nuclear Receptors” and see be-
low), it is meant to capture the conceptual basis of
pharmacology in a tripartite receptor system, espe-
cially the fact that response diversity can be generated
at the level of the effector. In addition to the three
scenarios shown in Fig. 2, diversity can also be gen-
erated further by differences in the nature of the hor-
mone response element, the influence of neighboring
DNA-binding sites for other nuclear factors, as well
as the nature of the promoter and chromatin state/
conformation.

The transcription activation functions ascribed to
different regions of nuclear hormone receptors (AF-1
and 2, or r1-74) can be thought of as sites through
which the receptor has the potential for interaction
with these various effectors (70, 72, 73). However, the
degree to which a particular ligand may engender the
receptor to operate through these different activation
function sites depends on the nature of the specific
effector system with which the ligand-receptor com-
plex interacts. Again, this is dependent on the cell- and
promoter-specific factors and the response elements
that constitute the effector. In cotransfection systems,
mutant receptors can be used to amplify the varied
effects of different ligands in their interaction with spe-
cific effector sites (5, 41, 43, 118-123). This approach
has assisted in the identification of ligands with spe-
cific desired biocharacter, such as ligands for the es-
trogen receptor that have the proper spectrum of
agonist/antagonist activity needed for hormone re-
placement therapy (43).
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In tripartite receptor pharmacology, it is useful to
consider that the potency of a particular ligand is
determined principally through the first interaction
(ligand and receptor binding), whereas its biocharacter
(i.e. agonist-antagonist balance) is determined princi-
pally through the second interaction (receptor-effector
coupling). This may prove to be an oversimplification,
as there are known exceptions. In model transcription
systems in yeast, certain receptor-modulatory pro-
teins (SSN6-TUP1) have been shown to alter ligand
potency (ECs,) of both estrogens and progestins by
several orders of magnitude, not by a perturbation of
ligand receptor binding, but by alteration of receptor-
effector coupling that is interpreted as a modification
of AF-1 activity. In this system, these adaptor proteins
also alter the biocharacter of antiestrogens without
changing ligand affinity (89). Related studies have de-
fined a glucocorticoid modulatory element in the
tyrosine amino transferase gene, and associated
transactivating factors, that alter ligand potency
and biocharacter (123). Conversely, it is possible that
variations in response element sequence that affect
receptor-effector coupling might also alter the confor-
mation of the receptor in a manner that would change
ligand affinity. Further investigation of ligand-receptor
binding and receptor-effector coupling in carefully
controlled systems will be required to fully elucidate
the relative role that each interaction plays in estab-
lishing pharmacological potency and biocharacter.
Regardless of these details, however, in a tripartite
receptor system, the pharmacological parameters of
potency and biocharacter are not unique characteris-
tics of a ligand; they can be assigned to a ligand only
when reference is made to a specific response or its
associated effector (Table 2).

CONSEQUENCES AND EXPECTATIONS

A prerequisite for receptor pharmacology, be it bipar-
tite or tripartite, is that ligand binding effects some
conformational change in the receptor that initiates the
response (directly—bipartite) or the potential for re-
sponse (through coupling with effectors—tripartite). It
is clear that the binding of a hormone ligand by its
nuclear receptor results in significant conformational
changes in the receptor. This has been evident for
some time through indirect studies that have noted
alterations in thermal stability, antibody binding, heat
shock protein dissociation, hydrophobicity, DNA bind-
ing, and protease sensitivity upon ligand binding. More
recently, crystallographic evidence (124-126) has
shown that the small nuclear receptor ligands are al-
most completely surrounded by protein in their com-
plexes with receptor. Moreover, within this complex
there appear to be intimate and detailed contacts be-
tween protein and ligand over the whole ligand surface
so that, of necessity, the conformation of a steroid-
nuclear receptor complex must reflect the shape and
structure of its ligand. Thus, the affinity and efficacy
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with which these conformationally diverse ligand-re-
ceptor complexes interact with the various effector
sites involved in the transcriptional regulation of dif-
ferent genes reflect the structure of the receptor com-
plex in its specific ligand-induced conformation. What
are the implications of this ligand-determined confor-
mation of the nuclear hormone receptors?

First, it is not surprising that in the nuclear hormone
receptor system, ligands of different structure operat-
ing through the same receptor can show distinct cell-
and gene-specific effects. One should expect that the
same receptor, bound with ligands of different struc-
ture, gives rise to complexes of different conformation.
Such conformationally different ligand-receptor com-
plexes have the potential for different coupling with the
spectrum of effector sites that are present in each
target cell and that embody all the cell- and gene-
specific factors that enable individual genes to be
differentially regulated by different ligands. At the mo-
ment, the number of genes whose expression is
known to be regulated as a primary response to ste-
roid hormones is rather limited. As more are identified,
it is likely that the diversity of response to ligands that
is possible with this tripartite receptor system will be-
come even more evident.

Second, in contrast to allosteric effector ligands in
enzyme systems and ion channels that bind rapidly to
preformed regulatory sites and act like switches con-
trolling the conformation between two states, active
and inactive (conformation selection) (127), one should
expect the hormonal ligand to affect the conformation
of the receptor in more of a progressive or continuum
fashion. The rate at which ligands associate with nu-
clear receptors is slow, far below diffusion control,
which characterizes most small molecule-protein in-
teractions. This suggested that the receptor under-
goes a substantial conformational reorganization upon
binding the ligand. Furthermore, since many unligan-
ded receptors are associated with certain heat shock
proteins, the sequences that constitute the ligand-
binding pocket were thought to be somewhat disor-
dered in the absence of ligand. Both of these expec-
tations have been confirmed by recent X-ray crystal
structures (124-126). Thus, the formation of the
ligand-receptor complex in the nuclear hormone re-
ceptor system is an excellent example of an induced fit
(128), conformation induction (127), or macromolecu-
tar perturbation (129), with the receptor conforming to
the shape of the ligand (and the ligand, if flexible,
having its conformation altered by binding to the re-
ceptor as well) (125, 126).

Finally, while structural elucidation methods will
soon give us high resolution models for many nuclear
receptors binding ligands of varying structure, the im-
pact of this structural information on our understand-
ing of steroid hormone molecular pharmacology,
though very useful, will still be limited. The picture will
be complete only when the details governing the cou-
pling of these ligand-receptor complexes with the
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varying elements of their third partners, the effector
sites, also become illuminated.
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Nuclear hormone receptors: ligand-activated regulators of
transcription and diverse cell responses
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Signal transduction via nuclear hormone receptors is unusual
in that the hormone ligand forms an integral part of the protein
complex involved in DNA binding and transcriptional
activation. New structural and biochemical results have begun
to unravel how these receptors produce different effects in
different cells, and the structural changes involved in
transcriptional activation.
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Introduction

Radiolabeled steroid and thyroid hormones of high specific
activity were first prepared in the late 1960’s, and were
used as probes to identify the sites of hormone action [1].
It has been known for nearly 30 years that these hormones
act via intracellular receptor proteins whose principal target
for action is in the nucleus. The receptor proteins were
quickly surmised to be regulators of transcription [2-6],
and are now known to be part of the nuclear receptor
superfamily. This large group of transcription factors
includes proteins that mediate the action of the steroid
hormones (such as estrogens, androgens, glucocorticoids,
mineralocorticoids and the insect steroid hormone
ecdysone), as well as the non-steroid hormones (for
example, thyroid hormone, vitamin D3 and the retinoids)
and receptors that mediate the peroxisomal proliferation
response to fatty acids and other factors (Fig. 1) [7-11].

Many other members of the superfamily have been identi-
fied by low stringency hybridization analysis; some of the
genes thus identified encode proteins that are known to
be expressed and have the conserved six-domain structure
seen in the hormone receptors. Because the hormonal
ligands for these proteins are unknown, they are termed
‘orphan’ receptors [12]. It is however possible that some of
these so-called receptors may act as transcription factors
alone, without ligands. To add to the complexity of the
situation, most classes of receptors within this family
contain more than one subtype (i.e., products of closely
related genes); sometimes there are also different isoforms
(i.e., products from alternate transcription start sites on the
same gene) and products of mRNA splice variants. Both
the concentration of these receptors and the relative ratio
of subtypes and isoforms vary in different target tissues
and at different stages of development.

Structure and function of the nuclear receptors
The signature of the nuclear receptor family is a six-
domain structure, the most highly conserved portion of
which is the small (~70-80 amino acids) domain, C, that is
responsible for DNA binding (Fig. 2). This domain has
been known for some time to have a helix-loop-helix
structure containing two zinc atoms, each chelated by four
cysteine thiols at the start of each helix. Three residues at
the start of the first helix in this domain ‘read’ a five to six
base pair code in a DNA hormone-response element; the
mechanism of this sequence-specific recognition is
becoming increasingly clear through structural analysis of
domain C-oligonucleotide complexes by X-ray crystallog-
raphy [13]. The large (~250 amino acid) domain, E, which
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Figure 1
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Structures of nuclear receptors and their ligands. (@) Common domain
structure of representative members of the nuclear receptor
superfamily, human estrogen receptor « (hERa), human glucocorticoid
receptor a (hGRa), human thyroid hormone receptor (hTRa), human
retinoic acid receptor vy (hRARY), and two orphan receptors COUP-TF
and HNF-4. The DNA-binding domain C and ligand-binding domain E
are shown with their percent sequence identity (or similarity, in
parentheses) to hERo. (b) The natural ligands for the first four
receptors in (a) are shown; there are no known ligands for the orphan
receptors COUP-TF and HNF-4.

is moderately conserved across members of the family, is
responsible for hormone binding and dimerization, and is
critical in the regulation of transcription (see below). The
other domains (the amino-terminal A/B domains, the
hinge domain D, and sometimes a carboxy-terminal
domain, F), which are poorly conserved in length and
sequence across the family, are mostly involved in the
modulation of receptor function.

Nuclear receptor ligands are directly involved in
transcriptional regulation

Recent advances have clarified the various ways in which
these nuclear receptors can become activated, as well as

some of the molecular details of the modulation of the
transcriptional activity of specific genes. The essential
and intricate role of the ligand in controlling the regula-
tion of gene transcription by these receptors is also now
becoming clearer (Fig. 3) [14,15]. Although hormones and
growth factors that interact with receptors at the cell
membrane may ultimately affect gene transcription, they
require multiple-step signal transduction pathways to do
so (Fig. 3a); the change in transcription factor activity
takes place far away from the interaction between the
receptor and the provoking hormonal agent. By contrast, a
ligand that activates a nuclear receptor forms a part of the
multicomponent complex that directly regulates gene
transcription. Such direct interactions offer interesting
opportunities for selective pharmacology [16].

There is evidence that high affinity binders for steroid
hormones exist in cell membranes, especially in some
brain, pituitary and cancer cells. These receptors appear to
mediate some very rapid effects of steroid hormones, and
it is not yet clear whether their modes of action are similar
to or different from the nuclear receptors [17,18]. We will
focus here exclusively on the nuclear receptors, since the
information on this class is most complete.

Variations on a theme

The classical picture of gene activation via nuclear recep-
tors (Fig. 3b) is straightforward. The hormonal ligand
binds to the receptor; the receptor—ligand complex thus
formed binds (usually as a dimer) to a hormone-response
element in the promoter region of a regulated gene, and
the transcription of the gene connected to the promoter is
thus activated.

Figure 2

A ribbon structure representation of the human glucocorticoid
receptor DNA-binding domain dimer complexed with a glucocorticoid
response element (GRE). The DNA contact helices, shown edge on,
interact with the palandromic DNA sequences of the GRE in adjacent
major grooves.
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Figure 3

Both membrane receptors and nuclear

receptors modulate gene transcription, but
nuclear receptors do so more directly. (a)
Membrane receptor signaling; (b) nuclear
receptor signaling. In a membrane receptor
signaling system, the signal resulting from the
binding of the ligand (L) to the receptor must
be transduced to the nucleus via complex
signal-transduction cascades, which typically
involve second messengers, kinase cascades
and/or phosphorylation (P) of intermediary
proteins (such as STATSs) in the cytoplasm.
The end result is a change in the activity of a
transcription factor (TF) in the nucleus,

(a) Membrane receptors.

affecting the rate of initiation of RNA

polymerase Il (pol Il). The effects of a (b)
hormone that acts via a nuclear receptor are
much more direct; the ligand and receptor
form part of the multicomponent complex that

modulates pol Il activity.

It cannot, however, be this simple. The target of the
ligand-receptor complex can clearly vary with cell type,
which would be impossible in the rudimentary scheme
described above. For example, when estrogen binds to the
estrogen receptor in breast cancer and uterine cells the
result is the stimulation of transcription from some early
response genes, such as ¢-myc, and genes for growth factors
(such as TGF-a or pS2) or growth factor receptors (such as
the EGF receptor) that are involved in the stimulation of
cell proliferation evoked by the hormone [19]. The same

Figure 4

ligand-binding event in pituitary and liver cells results in
activation of other genes. In the pituitary, the expression of
various secreted proteins such as prolactin is increased,
whereas in the liver the level of vitellogenin, among others,
is increased.

The variations on the classical picture occur at all levels.
One source of variability in the effect of ligand binding is
the cellular distribution of the receptor in the absence of
ligand. The receptors for certain non-steroid ligands (e.g.,

The subcellular location of unliganded
nuclear receptors affects the way that they
modulate transcription. (a) The unliganded
receptors for nonsteroid ligands such as
thyroid hormone and retinoic acid are
typically bound as dimers to their hormone
response elements (HRESs), even in the
absence of ligand, and can act as
transcriptional repressors without ligands or
transcriptional activators with ligand. (b) The
unliganded receptors for some steroid
hormones, such as glucocorticoids, are
largely held as monomers in the cytoplasm by
heat-shock proteins (90, 23), chaperonins
(70) and immunophilins (40, 52, 54); in this Nucleus
state they have no effect on transcription.
Ligand binding releases the receptors from
the cytoplasmic aggregate, and the activated
receptors bind as dimers to the HREs and
activate transcription.
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thyroid hormone and the retinoids) appear to be already
bound to their response elements (Fig. 4) [20]. Ligand
binding may strengthen DNA binding, and may alter the
structure of the receptor so as to enhance transcription
(see below). In the absence of ligand, these DNA-bound
receptors repress gene transcriptional activity [21,22]. In
contrast, many of the steroid nuclear receptors (e.g., the
glucocorticoid receptor) are largely cytoplasmic in the
absence of ligand. They are held in the cytoplasm in
complex with heat-shock proteins, chaperonins, and
various other proteins such as immunophilins {23]. Ligand
binding helps the receptor to shed these proteins, move
into the nucleus, dimerize, and interact with appropriate
hormone response clements (Fig. 4). In such a scheme,
the unliganded receptor cannot be used as a transcrip-
tional repressor, as it is held in the cytoplasm, away from
the DNA. The degree of nuclear versus cytoplasmic local-
ization of unliganded receptors varies with different recep-
tors and in different cells, so the effect of the unliganded
receptor on transcription will depend on the cell and
response in question.

A second level of variation in our originally simple scheme
is the way in which the receptor forms a dimer. The non-
steroid nuclear receptors for thyroid hormone, vitamin D
and retinoic acid can either form homodimers or hetero-
dimerize with the retinoid X receptor [12,20]. The recep-
tor for the insect steroid hormone ecdysone, on the other
hand, is active only as a heterodimer with the protein
ultraspiracle, a homolog of the retinoid X receptor (RXR).
The preference of the thyroid, vitamin D and retinoic acid
receptors for pairing with themselves or with another
partner depends on several factors, including the relative
concentration of the monomer components (not forgetting
the different subtypes and isoforms) and of their cognate
ligands. Ligand binding can, in some situations, modulate
the formation of specific complexes [24]. A further factor
is the structure of the DNA response elements with which
the homo- or heterodimers interact [20,24].

The dimerization of steroid receptors at first appeared to
be less complicated, since heterodimerization between
receptors that bind different ligands (like the thyroid
receptor and the RXR) does not seem to occur. Neverthe-
less, heterodimerization is clearly possible between
receptor subtypes (which may have some differences in
ligand-binding specificity) and between receptor isoforms
(which often have distinctly different transcriptional
activities). Examples of subtypes and isoforms that het-
erodimerize are glucocorticoid receptor o and B, and
progesterone receptor A and B forms, respectively.
Receptor dimerization and receptor stability are impor-
tant points for pharmaceutical regulation of transcription
via nuclear receptors, and several hormone antagonists
(some antiestrogens and antiprogestins, for example)
appear to act at this level [25-28].

Variations also occur at a third level, the interaction of
nuclear receptors with the DNA response elements.
Although the response elements are often portrayed as con-
sensus sequences — inverted or direct repeats of a defined
five- to six-nucleotide sequence, with various spacers
between the repeats — the response elements found in
responsive genes are often nonconsensus in sequence; some
are half-sites and others have multiple repeats. Often the
response elements are found in complex, upstream-
enhancer regions, clustered together or even overlapping
with response elements for other known transcription
factors, which may synergize or compete with the nuclear
receptors. Sequences that flank the core response elements
can also affect the DNA binding of these receptors (see, for
example, [29]). And the structure of the DNA response
element, since it affects the recognition between the recep-
tor and the DNA, may also affect the interaction between
the receptor and the ligand.

Given all the sources of variation described above, espe-
cially the fact that nuclear receptors may interact with or
compete with a number of other sequence-specific trans-
cription factors, it is not surprising that the response to a
specific hormone depends on both the cell in which it is
acting and the gene whose activity it modulates [16].

Nuclear receptor activation without direct DNA binding or
without ligand binding

A curious but major deviation from the classical scheme
for nuclear receptor action is gene activation in the
absence of direct DNA-binding by the receptor. In this
situation the promoter for a gene whose activity is clearly
regulated by a nuclear receptor and its hormone appears to
have no hormone-response element for the receptor, and
does not, in fact, require direct DNA binding by the
receptor. The hormone-receptor complex seems to func-
tion by binding to DNA indirectly via other DNA-teth-
ered transcription factors (see, for example, [30-32]), thus
acting as a ligand-modulated co-regulator, rather than a
ligand-modulated transcription factor (Fig. 5).

Figure 5

Nuclear receptor gene activation can occur without direct DNA
binding. The nuclear receptor is tethered to DNA by a protein—protein
interaction with another sequence-specific transcription factor, such as
fos/jun (AP1). In such a case, the nuclear receptor has the role of a
ligand-modulated co-activator of transcription.
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Figure 6

Co-regulators mediate the interaction
between the nuclear receptor and
components of the transcription complex.
Unoccupied or antagonist-occupied
receptors can recruit co-repressors (left);
when an agonist ligand binds, the
ligand—receptor complex can recruit co-
activators (right).

# Co-repressor

Unoccupied
(or antagonist- occupied)
receptor-co-repressor complex

Agonist-occupied
receptor-co-activator complex

Another major deviation from the classical scheme for acti-
vation of genes by nuclear receptors is ligand-independent
gene activation. In certain systems there appears to be sig-
nificant crosstalk between signal-transduction pathways
that activate transcription. The result is that growth factors
or hormones that operate through receptor tyrosine
kinases or via cAMP or other second messengers can acti-
vate nuclear receptor regulated genes in a manner that
requires receptor but not ligand [19]. In some cases, these
alternative pathways may synergize with the normal ligand-
mediated pathway [33]. The molecular mechanism for
such action is not well understood, but it is possible that
phosphorylation of specific sites on the nuclear receptors
may enhance the transcriptional activity of the unliganded
receptor [19,34].

Modulation of gene transcription

Once a nuclear receptor is bound to DNA, what happens
next? The final step of the classical pathway, the process
by which these receptors modulate the rate of gene trans-
cription (Fig. 6), has its own sources of regulatory com-
plexity. First, it is important to recognize that the rate at
which a gene is transcribed depends both on the local
chromatin architecture, and on the rate at which an active
RNA polymerase preinitiation complex can be assembled.
The nuclear receptors appear to affect both of these
processes, both directly and indirectly via ‘transcription
intermediary factors’ (TIFs) [9,35,36], although their
effect on chromatin architecture is poorly understood.
There is evidence that DNA-bound nuclear receptors
interact directly with some of the proteins comprising the
basal transcription machinery, such as TFIIB or TATA-
binding protein associated factors (TAFs) [37-39]. If they
suppress or stimulate a rate-limiting step in the assembly
of an active RNA polymerase II preinitiation complex, this
would result in repression or activation of transcription. In

many cases the relevant interactions between nuclear
receptors and basal transcription factors appear not to be
direct, however, but are mediated by various co-regulators.

The co-regulators involved in nuclear-receptor modula-
tion of gene transcription are diverse, and are being dis-
covered at an increasing rate. They are often large
multidomain proteins, with some homology to factors that
are known to modulate chromatin structure; some have
known protein-interaction domains, or have the ability to
interact with various components in the general transcrip-
tion apparatus [16]. Some also appear to fit nicely into the
unliganded-repression/liganded-activation paradigm, in
that one set of co-regulators binds to the unliganded
thyroid and retinoid receptors to repress transcription
[40,41], whereas another set binds to liganded receptor to
enhance transcription [42-46]. In the case of the steroid
receptors, the co-regulators appear to bind to either the
amino-terminal or carboxy-terminal activation domain of
the receptors. Some co-regulators interact with and influ-
ence the transcriptional activity of many steroid hormone
receptors and other related receptors, such as RXR,
whereas other co-regulators show a more restricted range
of receptor interaction.

Structural and conformational changes on ligand binding

As the interaction between the co-regulators and the
nuclear receptor is regulated by ligand binding, it is plausi-
ble that ligand binding elicits a conformational change in
the receptor that may permit co-activator but not co-repres-
sor binding in the presence of ligand (or co-repressor but
not co-activator binding in the absence of ligand). Muta-
tional mapping studies have begun to identify the different
regions of the receptor that seem to be responsible for
interaction with co-repressors and co-activators [35,43,47].
Most exciting are some of the structural features revealed
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Figure 7

Stereoview of a ribbon structure of the
ligand-binding domain of the rat thyroid
hormone receptor complexed with thyroid
hormone (T3), shown as a skeletal structure
in the lower half of the protein. The regions of
a-helical (H) and B-strand (S) secondary
structure are designated.

in the recent X-ray crystal structures of three different
receptor ligand-binding domains (domain E) (Fig. 7);
these structures provide insight into the conformational
reorganization that occurs upon ligand binding [48-51].

The ligand-binding domain of the nuclear receptors is
large, larger than most single protein domains, with a
unique antiparallel a-helix triple sandwich topology
(Fig. 7). Approximately half of the domain consists of a
rigid, tightly packed assembly of helices that appear to act
as a fundament or fulcrum for the action of the remainder of
the domain, which is more flexible and is involved in ligand
binding. Although the three structures that have been
described so far do not permit a direct comparison between
the conformations of a single receptor in the liganded and
unliganded state, certain general features have emerged that
are likely to hold true for the ligand-induced conformational
changes of all of the members of the superfamily.

In the bound state, the ligand is completely engulfed by the
flexible portion of the domain, and actually forms the
hydrophobic core for this region [49,50]. Six segments of
secondary structure, arranged roughly as the six sides of a
box, surround the ligand, with more than 20 residues
making direct contact with the ligand (Fig. 8). In the lig-
anded state, the carboxy-terminal portion of this domain, an
amphipathic helix, termed the activation function 2 activa-
tion domain (AF2-AD), interacts with the ligand and is posi-
tioned adjacent to two other helical portions of the receptor
whose specific orientation is also dependent upon contacts
with the ligand (see Fig. 7, helix 12). This composite
surface, whose integrity appears to be critically dependent
on ligand binding, is one likely site for co-activator binding.

By contrast, in the unbound state, the flexible portion of
the ligand-binding domain lacks its hydrophobic core,

namely, the ligand. In the one published structure for an
unliganded receptor [48], the box-like structure of the
flexible portion of domain E appears to have collapsed,
with two sides tipping inward and two sides tipping
outward; the activation helix is dislodged from its position
between the other two helices, since their relative position
is no longer supported by contacts with the ligand (see
Fig. 8). The composite surface for co-activator binding is
thus absent or at least substantially modified in the unli-
ganded state. But in the collapsed state, various new topo-
graphical features have developed, providing potential
sites for co-repressor binding,.

X-ray crystallography provides static pictures of protein
structure. It is thus possible that the flexible ligand-
binding region of domain E in the unliganded state may
be rather fluid, perhaps in a molten globule-like state.
The binding of heat shock proteins (which normally bind
only to unfolded or partially folded proteins) and
immunophilins to the unliganded steroid receptors and
the sensitivity of the unliganded receptor to proteolysis
supports this view [52]. Further studies, especially ones
in which a direct comparison can be made between struc-
tures of the liganded and unliganded state of the same
receptor, will be needed to verify the generality of these
conformational transitions.

Ligand binding affects receptor shape — thus, receptor
shape reflects ligand shape. As co-repressor/co-activator
binding responds to alterations in receptor shape, the
ligand is the crucial factor in recruiting or disbanding these
important co-regulators. The view that ligand shape deter-
mines receptor shape and thus receptor activity can also
account for the spectrum of biological activity — from pure
agonists to partial agonists/antagonists to pure antagonists
— that is known for ligands for some of these nuclear
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Figure 8
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A ‘box mode!' for the ligand-binding domain
of a nuclear receptor. When an agonist
ligand is bound, the upper box, made up of
mobile segments with the ligand at its core,
is ‘filled’; in this conformation, it has a
structure in which the activation domain (helix
12) is in the active state, where it can interact
with co-activators, activating transcription.
Without ligand, the upper box is empty and is
‘crushed’, so that two sides cave inward and
two sides bulge outward; the activation helix
is displaced from the active state, and the
empty receptor is thus either inactive or
recruits co-repressors to become repressive.
Antagonists and partial agonists fill the top
box in a different manner, such that the
activation helix is fully or partially misoriented
from the activating position. The
conformation of the lower box is not affected
by ligand binding. (Note that this schematic
representation of the ligand binding domain
of a nuclear receptor is shown in the
orientation opposite to that of the thyroid
hormone receptor-T3 complex shown in
Figure 7. In Figure 7, the ligand-binding ‘box’
is at the bottom.)

receptors, such as estrogens and progestins. Given all this,
the potential for pharmaceutical modulation of the trans-
criptional activity of nuclear receptors is obvious [15,16].

Pharmacological issues, however, extend beyond the
ligand-receptor interaction. The biological effect that a par-
ticular ligand will have, acting via a given receptor, will also
depend on the intracellular context (i.e., the levels of the
relevant co-regulators and transcription factors with which
the receptor cooperates) and the promoter for the specific
gene being regulated (i.c., the structure of the hormone-
response element and whether any other transcription
factors bind to nearby sites). This ‘tripartite receptor phar-
macology’, comprising ligands, receptors, and cell and
promoter specific transcriptional effectors, offers rich
possibilities for developing tissue- and response-specific
pharmaceuticals [16].

The future

There is much more to learn. The details of the ligand-
induced conformational changes within one receptor
protein are yet to be revealed, and we do not yet know
how all the different domains of a nuclear receptor interact
with each other. A full appreciation of the molecular inter-
actions involved in the gene-regulating action of the
nuclear receptors will require reconstitution of multipro-
tein complexes involving the intact receptor (as a homo- or
heterodimer) interacting with a complete gene regulatory
region, together with other associated transcription factors,
co-regulator proteins, and elements of the general trans-
cription apparatus. Equally important will be biological

studies detailing regulation of the levels and activity of
receptors and their co-regulators as a function of physio-
logical and developmental state in different hormonal
target cells and tissues. Clearly, the major and perhaps the
most exciting challenges still lie ahead.
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Response-specific Antiestrogen Resistance in
a Newly Characterized MCF-7 Human
Breast Cancer Cell Line Resulting from
Long-term Exposure To Trans-
hydroxytamoxifen

Mary E. Herman and Benita S. Katzenellenbogen*

Departments of Molecular and Integrarive Physiology, Cell and Structural Biology, University of llinois, Urbana, IL
61801-3704, U.S.A.

To understand better the antiestrogen-resistant phenotype that frequently develops in breast cancer
patients receiving tamoxifen, we cultured MCF-7 breast cancer cells long-term (>1 yr) in the pre-
sence of the antiestrogen trans-hydroxytamoxifen (TOT) to generate a subline refractory to the
growth-suppressive effects of TOT. This subline (designated MCF/TOT) showed growth stimulation,
rather than inhibition, with TOT and diminished growth stimulation with estradiol (E,), yet
remained as sensitive as the parental cells to growth suppression by another antiestrogen, ICI
164,384. Estrogen receptor (ER) levels were maintained at 40% of that in parent MCF-7 cells, but
MCFITOT cells failed to show an increase in progesterone receptor content in response to E; or
TOT treatment. In contrast, the MCF/TOT subline behaved like parental cells in terms of E; and
TOT regulation of ER and pS2 expression and transactivation of a transiently transfected estrogen-
responsive gene construct. DNA sequencing of the hormone binding domain of the ER from both
MCF-7 and MCFI/TOT cells confirmed the presence of wild-type ER and exon 5 and exon 7 deletion
splice variants, but showed no point mutations. Compared to the parental cells, the MCF/TOT sub-
line showed reduced sensitivity to the growth-suppressive effects of retinoic acid and complete re-
sistance to exogenous TGF-f1. The altered growth responsiveness of MCF/TOT cells to TOT and
TGF-f1 was partly to fully reversible following TOT withdrawal for 16 weeks. Our findings under-
score the fact that antiestrogen resistance is response-specific; that loss of growth suppression by
TOT appears to be due to the acquisition of weak growth stimulation; and that resistance to TOT
does not mean global resistance to other more pure antiestrogens such as ICI 164,384, implying that
these antiestrogens must act by somewhat different mechanisms. The association of reduced reti-
noic acid responsiveness and insensitivity to exogenous TGF-f with antiestrogen growth resistance
in these cells supports the increasing evidence for interrelationships among cell regulatory pathways
utilized by these three growth-suppressive agents in breast cancer cells. In addition, our findings in-
dicate that one mechanism of antiestrogen resistance, as seen in MCF/TOT cells, may involve
alterations in growth factor and other hormonal pathways that affect the ER response pathway.
Copyright © 1996 Published by Elsevier Science Ltd.
$E
J. Steroid Biochem. Molec. Biol., Vol. 80, No. 0, pp. 1-14, 1996

INTRODUCTION breast cancer. Unfortunately, the vast majority of
tamoxifen-treated breast tumors eventually become
refractory to the beneficial effects of this antiestrogen.
Characterization of tamoxifen-resistant breast tumors
established in nude mice [1, 2] and in culture [3-6]
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sistance. Whereas changes in ER-mediated transcrip-
tional activity may confer or promote antiestrogen re-
sistance, it is also possible that this phenotype may be
influenced by interactions with other regulatory path-
ways. There is an emerging body of evidence that
shows cross-talk of the ER pathway [7, 8] with pep-
tide growth factors and with other nuclear receptor
ligands, such as the retinoids [9-11] suggesting that
these may be involved in antiestrogen resistance and
in the more aggressive behavior often associated with
antiestrogen-resistant tumors.

In normal and neoplastic epithelial cells, the trans-
forming growth factor-fs (TGF-fs) are most fre-
quently associated with growth inhibition, whereas in
a number of cell types, such as fibroblasts, the TGF-
Bs are growth stimulatory (for review, see [12]). The
finding that tamoxifen increases TGF-f levels in
tumnors suggests that the therapeutic effect of tamoxi-
fen in slowing or arresting tumor growth may be
partly attributable to the growth-inhibitory action of
the TGF-fs [13]. It has been demonstrated that es-
trogens suppress and antiestrogens augment TGF-§
expression in human breast cancer cell lines in culture
[14, 15]. Interestingly, a number of advanced stage
tumors and cancer cell lines exhibit a TGF-f-resistant
phenotype (for example, [16]), suggesting that the
development of TGF-f§ resistance may abrogate the
beneficial effects of tamoxifen on breast cancer cells.

We maintained MCF-7 human breast cancer cells
in trans-hydroxytamoxifen (TOT) for more than 1
year to generate an in vizro model for the study of
tamoxifen resistance. Herein, we report on the pro-
liferation of the cells, and the activity of the estrogen
receptor and its responsiveness to estrogen and to two
different classes of antiestrogens, as well as on the
effects of TGF-f and retinoic acid on this subline.
Our findings suggest interrelationships among the
pathways utilized by antiestrogens, TGF-§ and reti-
noic acid in the regulation of these breast cancer cells.

MATERIALS AND METHODS

Mazerials

Radioinert E, and R5020 (promegestone; 17,21-
dimethyl-19-nor-pregna-4,9-diene-3,20-dione), nutri-
tional supplements for growth in serum-free con-
ditions, protease  inhibitors, TPA (12-0-
tetradecanoylphorbol-13-acetate), MTT (thiazolyl
blue), all-zrans-retinoic acid and sera were purchased
from Sigma Chemical Co. (St Louis, MO). Trans-
hydroxytamoxifen (TOT), ICI 182,780 and ICI
164,384 (ICI) were generously provided by Zeneca
Pharmaceuticals (Macclesfield, U.K.). Tissue culture
media and antibiotics were purchased from GIBCO
(Grand Island, NY). Tritiated E, (2,4,6,7-°H-N-
estradiol) and >H-R5020 (17-alpha-methyl->H-pro-
megestone) were purchased from New England

Nuclear Corp. (Boston, MA) and
methyl[>H]thymidine from ICN, Costa Mesa, CA.

Cell culture

MCF-7 human breast cancer cells were acquired
from the Michigan Cancer Foundation; cells between
passage numbers 150 and 300 were used in these stu-
dies. Parent MCF-7 cells were routinely cultured in
phenol red-containing Eagle’s minimal essential med-
ium (MEM) supplemented with 5% heat-inactivated
fetal calf serum (FCS), E, (1072 M), 4-(2-hydro-
xyethyl)-1-piperazineethanesulfonic acid buffer
(10 mM), insulin (6 ng/ml), penicillin (100 units/ml),
streptomycin (100 ug/ml), and gentamicin (50 ug/ml).
To generate TOT-resistant MCF-7 sublines, cells
were maintained in the above media without sup-
plemented E,, and with 10-fold increases in TOT
concentration (10~° M-10"°M) every four weeks.
The cells were thereafter routinely maintained with
10° M TOT. Cells were subcultured weekly at near
confluence using 1 mM EDTA prepared in Hank’s
balanced salt solution and medium was replenished
every other day. To generate clonal-derived sublines,
96-well plates were seeded at approximately one cell
every three wells. Two weeks after seeding, wells con-
taining only one colony were identified. Clonal-de-
rived sublines were maintained and sequentially
transferred to 24-well plates, then six-well plates and
T25 flasks.

For all studies involving experimental treatments,

cells were grown without E, for one week or without

TOT for two weeks and then subsequently in 5%

CDFCS IMEM without insulin for an additional 5-

- 10 days prior to the experiment, in order to deplete

the cells of E; or TOT prior to the onset of exper-
iments.

Cell proliferation studies

To determine cell number, cells were seeded at
150,000 cells/T25 flask in triplicate and after two
days day 0 flasks were counted and the medium was
replaced and treatments added. Media were changed
every two days and cells in logarithmic phase were
harvested on day six and counted in a Coulter particle
counter (Hialeah, FL).

Anchorage-independent growth was determined by
a colony-forming assay. In brief, six-well plates were
coated with 0.6% agar in 5% CDFCS IMEM and
allowed to cool. Cell suspensions containing 10,000
cells were passed through a 22-gauge needle and then
added to a mixture equilibrated to 45°C containing
0.4% agar, 5% CDFCS IMEM and treatments and
added to the wells. Plates were grown for two weeks
with a top layer of media which was replenished every
three days. Colony size (>60 u) was determined
microscopically with an ocular grid (Wild M40 micro-
scope; Heerbrugg, Switzerland).
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In some studies, cell number was determined by

- MTT the Bt assay. MTT (thiazolyl blue) is converted

from a yellow-colored salt to a purple-colored forma-
zan by cleavage of the tetrazolium ring by mitochon-
drial dehydrogenases, the activity of which is linear
with cell number. Cells were seeded at 2000-5000
cells/well in 96-well plates in quadruplicate. After
treatment as -indicated, 50 ul of 2 mg/ml MTT was
added and plates were incubated at 37°C for 4h.
Wells were drained and formazan crystals were solu-
bilized in 150 ul buffer (20% w/v sodium dodecyl
sulfate dissolved in 50% dimethylformamide/50%
dH,0 containing 2.5% acetic acid and 2.5% of 1 N
HCl with a final pH of 4.7 [17]. Absorbance at
570 nm was determined on a plate reader.

For [>H]thymidine incorporation studies, cells were
seeded at 2000 cells/well in 24-well dishes. Two or
three days later the wells were washed in serum-free
media for 2h and then treated in serum-sup-
plemented or in serum-free IMEM with 1 gg/ml fibro-
nectin, 2 ug/ml wansferrin and 1:100 dilution of trace
elements. After three or four days, the cells were incu-
bated with 0.5 uCi methyl[>?H]thymidine at 37°C for
2 h. Plates were sequentially washed and fixed with
ice-cold PBS, 10% TCA (2x), MeOH, and then in-
corporated label was recovered by incubation of the
wells in 0.5 N NaOH for 30 min at 37°C. Lysates
were transferred to vials containing ScintiVerse™
cocktail (Fisher Scientific) and [PH]thymidine was
determined in a scintillation counter.

Whole cell binding assays

Whole cell ER and progesterone receptor (PgR)
binding assays were done as previously described -

[18]. Cells were incubated with 10nM [PH]E, or
[PHJR5020 in the absence or presence of a 100-fold
excess of unlabelled ligand, and for PgR studies, with
3.75 ng/ml hydrocortisone. After incubating at 37°C
for 40 min, cells were washed three times with 1%
Tween~80 in phosphate-buffered saline and bound
radiolabelled ligand was extracted with ethanol and
counted in a scintillation counter.

Western blot analysis

Subconfluent cell layers were pelleted and resus-
pended in 50 mM Tris (pH7.4), 7.5 mM EDTA,
0.6 M NaCl, 10% glycerol in the presence of protein-
ase inhibitors (leupeptin, pepstatin A, phenylmethyl-
sulfonylfluoride) and homogenized on ice. Samples
were centrifuged for 25 min at 46 K and the protein
content in the supernatants determined in a BCA
assay (Pierce Chemical Co., Rockford, IL). Samples
(150 pg) were boiled for 5 min in loading buffer, sep-
arated on a SDS polyacrylamide stacking gel and
transferred to nitrocellulose. Blots were incubated
with estrogen receptor-specific antibodies H222 (exon
7 epitope) or with H226 (exon 1,2 epitope) in combi-
nation with D547 (exon 4 epitope), then a bridging

rabbit anti-rat IgG, and finally with [125I]protein A,
and then exposed to film [19]. ‘

TGF-B protein determinarions

Subconfluent cell layers were washed three times
for 1h in serum-free media and then incubated in
serum-free media supplemented with 2 ug/ml transfer-
rin, 1 pg/ml fibronectin and 1:100 trace elements.
After 48 h, BSA was added to the conditioned media
to a final concentration of 0.5 mg/ml and the samples
were snap frozen and later tested for the ability to
inhibit [°H]thymidine incorporation by MV 1 Lu
mink lung epithelial cells. Latent and total TGF-8
bioactivity was kindly determined by Anita Roberts
and Nan Roche of NCI, Bethesda, MD as described
[20].

Transient transfections and assays for reporter activity

To measure responsiveness to E,, a construct con-
taining the consensus estrogen response element
linked to a thymidine kinase promoter and the CAT
gene (ERE-tk-CAT) was cotransfected into cells
along with the internal control plasmid, CMV-f-gal,
exactly as described [20] and cell extracts were
assayed for CAT activity. Fold inductions within each
assay were normalized against f-galactosidase activity
as described [20]. '

Isolation of RNA

Isolation of total RNA from near confluent cell
monolayers was performed using guanidinium thio-
cyanate-phenol-chloroform extraction with some

“modifications as described [20].

Northern blot analysz's

For studies involving the induction of pS2 mRNA,
cells were pretreated in 5% CXFCS IMEM as
described in the Materials and methods section and
treated with the ligands indicated for 12 h. Twenty
micrograms total RNA were separated by electrophor-
esis, transferred to a nylon support and hybridized
with random primer labelled fragments of human pS2
cDNA [21]. Sizes of bands were confirmed by com-
parison to a 0.24-9.5 kb RNA ladder (GIBCO BRL,
Grand Island, NY).

Ribonuclease protection assays

Ten to 30 ug of RNA was co-precipitated with n
vitro wranscribed, gel purified cRNA labelled with
phosphorus-32 and resuspended in 80% formamide/
0.1 M Na citrate (pH 6.4)/0.3 M NaOAc (pH 6.4)/1
mM EDTA. Samples were heated to 85°C for 5 min
and hybridized overnight at 45°C. Unhybridized total
RNA and probe was digested in a final concentration
of 5 units/ml RNase A and 1000 units/ml RNase T1
for 30 min at 37°C. The sizes of protected fragments
were confirmed by comparison to a lane loaded with
a 0.16-1.77 kb RNA ladder (GIBCO). The probes
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used were a 240bp Mbo II segment of TGF-f1
cDNA, a Hpa 1 segment of TGF-f2/sp72 cDNA,
and a 125 bp Nde 1 segment of TGF-$3 cDNA as
described previously [20]. The probes for TGF-8
Type I and II receptors were a 300 bp unprotected
Hinc II fragment (220 bp protected fragment) and a
360 bp unprotected Xho I fragment (260 bp protected
fragment), respectively, kindly provided by Dr M.
Brattain. A 125 bp fragment of human S-actin
(Ambion Inc., Austin, TX) was used as an internal
control. The relative intensity of the bands was quan-
titated on an UltraScan XL densitometer using
GelScan XL evaluation software.

[’IJTGF-B1 binding assay

Cells at 75-90% confluency in 24-well plates were
washed three times over 1h with serum-free media
supplemented with 0.1% BSA and incubated with
107'°M [*®I)TGF-B1 with or without a 100-fold
excess of cold TGF-f1 for 45 min. Cells were then
washed four times with 0.1% BSA in ice-cold HBSS
and solubilized with 1% Trton X-100/20 mM
HEPES, pH 7.4/10% glycerol/0.01% BSA for 15 min

~at 37°C. Solubilized fractions were counted in a
" gamma counter [20].

RT-PCR amplification, cloning and sequence analysis
Samples of RNA, isolated from parental MCF-7

. and MCF/TOT cells as described above, were reverse
: transcribed by AMV reverse transcriptase (Promega :

Corp., Madison, WI) and amplified using sense and

antisense primers specific for sequences flanking the
hormone binding domain of the estrogen receptor
(forward primer corresponding to estrogen receptor
c¢cDNA nucleotides 1036-1052, and reverse primer
corresponding to nucleotides 1946-1967, respect-
ively) using a PTC-100 programmable thermal con-
troller (MJ Research Inc.). Products were separated
and purified from agarose gel electrophoresis and
sequenced directly (Sequenase version 2.0; U.S.
Biochemical Corp.), according to Newton ez al. [22].
Sequencing reactions were analysed on 6% denaturing
polyacrylamide gels. Sequences were compared to
that reported for the human estrogen receptor in the
Genetic Sequence Data Bank (EMBL/GenBank).

RESULTS

Growth responsiveness of parent MCF-7 and MCF/TOT
cells to estrogen and antiestrogens

To generate TOT-resistant MCF-7 sublines, cells
were cultured with 10-fold increases in TOT concen-

" tration (107" M=107% M) every 4 weeks, as described

in Materials and methods. The cells were thereafter

. routinely maintained with 10° M TOT in their cul-

ture medium. Under this regimen, dramatically slo-
wed growth rates were observed for approximately 30
weeks from initial TOT exposure, after which time
cell growth rates progressively increased. The exper-
iments described herein were conducted between 60
and 140 weeks of maintenance on TOT, during
which time population doubling rates were compar-

-{ PARENT MCF-7
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Fig. 1. Anchorage-dependent growth responsiveness of parent MCF-7 and MCF/TOT cells to estrogen and

antiestrogens. Cell number in triplicate T2S flasks was determined on day 6 of treatment with the indicated

compounds. Treatments were with 10°M E,, 107’ M TOT, and 3x 10~ M ICI 164,384 alone or together.

Values are expressed as percentage of cell number in ethanol-treated control flasks. Cells were depleted of

steroids and TOT for 3 weeks prior to the onset of the experiment as described in Materials and methods. The

basal growth rates of the MCF-7 and MCF/TOT sublines were 3.95 + 0.01 and 3.34 + 0.07 days/population dou-
bling, respectively. Data represent mean + SEM (n = 3).
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able in the parent MCF-7 and MCF/TOT cells
(1.3£0.1 and 1.6 £+ 0.1 days, respectively). To deter-
mine the proliferative effects of estrogen and anties-
trogens on parent MCF-7 and MCF/TOT cells,

owth rates were slowed to approximately 3-4

de¢population doubling by transfer from steroid- and/
d /po - pop g by s

(PAYd
slash
o™
R

or TOT- and phenol red-containing media to media
lacking phenol red [23] and TOT and depleted of
steroids by charcoal-dextran treatment of the serum.
Parent MCF-7 cells exhibited dramatic increases in
cell proliferation rate in response to treatment with
10°M E, (1535+374% of control; Fig. 1).
Treatment with the pure antiestrogen, ICI 164,384
(CD), partly reversed estrogen-stimulated growth
(432 £163%) and was growth suppressive when
administered alone (44 + 10%). Similar results were
found when a structurally related pure antestrogen,
ICI 182,780, was used (data not shown). Treatment
with the antiestrogen TOT reduced the growth of the
parent MCF-7 cells (61 +9% of control) and also
very effectively suppressed the proliferation of these
cells stimulated by E,.

MCF/TOT cells were growth stimulated by 10~°> M
E; (387 £+ 54%; Fig. 1), but this response was modest
compared to the dramatic effect of estrogen stimu-
lation on the parent MCF-7 cells. Interestingly, we
found that the effect of treatment with TOT shifted
from growth suppression, as observed in the parent
MCF-7 cells, to growth stimulation in the MCF/TOT
subline (247 £59%). These results suggest that
MCF/TOT cells were not refractory to TOT, but
instead interpreted this ligand as an agonist.
Treatment with the pure antestrogen, ICI 164,384,
reduced the growth of MCF/TOT cells slightly
(68 £ 17%), and partly reversed E,-stimulated growth
(242 1 32%), as did ICI 182,780 (data not shown).
This indicates that MCF/TOT cells were not cross-re-
sistant to pure antagonists of the estrogen receptor.

We were also interested in determining whether the
altered phenotype of the MCF/TOT subline was
homogeneous or heterogeneous within the cell popu-
lation. Clonal lines were found to exhibit a growth
phenotype similar to that of the MCF/TOT whole
cell population (Fig. 1).

MCF/TOT cells showed responses to estrogen and
antiestrogen in anchorage-independent colony for-
mation assays (Fig. 2) similar to those observed in the
anchorage-dependent cell proliferation assays of Fig. 1.
MCF/TOT cells grown in soft agar were E, stimu-
lated in terms of colony formation, although to a les-
ser extent than the parent MCF-7 cells (Fig. 2), and
MCF/TOT cells were aiso growth stimulated by TOT
and growth inhibited by ICI 164,384. In contrast,
parental MCF-7 cells were inhibited by both TOT
and ICI 164,384. Interestingly, ICI 164,384 reversed
the growth stimulation observed in MCF/TOT cells
in response to treatment with TOT.

200

MCF-7

MCF/TOT

COLONIES/WELL
(Percent of Control)

A IIH I

109 ME,
106 MTOT
2x 106 MICI 164,384

Fig. 2. Anchorage-independent growth responsiveness of
parent MCF-7 and MCF/TOT cells to estrogen and antiestro-
gens. Parent MCF-7 and MCFITOT cells were seeded at
10,000 celis/well in six-well plates in a top layer of 0.4% agar,
5% CDFCS IMEM and treatments and over a solidified bot-
tom layer of 0.6% agar in 5% CDFCS IMEM. Colonies larger
\/ than 60 )¢ were counted microscopically with an ocular grid
on day 14 of treatment. Colony number from ethanol-treated
control wells was not dramatically different between the
MCF-7 and MCF/TOT sublines (838 + 45 and 951 + 126 colo-
nies/well, respectively), nor from two separate clonal-derived
sublines of MCF/TOT cells (1014 + 430 colonies/well; data not
shown). Values are expressed as percentage of colony
number + SEM of ethanol-treated control wells from three
separate experiments; *value significantly different from the
control treatment at P < 0.05 by Student’s ¢-test.

Assessment of antiestrogen antagonism of estrogen-stimu-
lated growth and pS2 mRNA expression

Treatment with TOT abolished E,-stimulated
growth in parent MCF-7 cells in a dose-dependent
-manner (Fig. 3, panel A). Fifty per cent suppression
was achieved with ca. 1 x 10~ M TOT, and the high-
est concentration of TOT tested (2 x 10-6 M) gave
nearly complete suppression of E,-stimulated growth
in parental MCF-7 cells. MCF/TOT cells were much
less sensitive to suppression of E,-stimulated growth
by TOT (Fig. 3, panel A). No suppression of E,-
stimulated growth was seen until concentrations of
TOT greater than 2x 107 M were used, and 50%
suppression required a concentration of TOT ap-
proximately 1000 times greater than that required by
the parental MCF-7 cells (i.e., 107° M). In contrast,
the pure antiestrogen, ICI 164,384, showed similar
dose-response curves for inhibition of E,-stimulated
growth in MCF-7 and MCF/TOT cells (Fig. 3, panel
B).

Induction of pS2 mRNA, an early primary response
to estrogen in MCF-7 cells [24], was used as an ad-
ditional end-point to compare the ability of TOT to
moderate E,-stimulated responses in MCF/TOT vs
parental MCF-7 cells. Interestingly, unlike prolifer-
ation, the dose response for TOT reversal of E,-
stimulated pS2 mRNA was similar in parent MCF-7
and MCF/TOT cells (Fig. 4). Also as shown in Fig. 4
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(inset), pS2 was markedly stimulated by E,, but
showed no stimulation by TOT in either cell line.
Therefore, TOT is not universally seen as an estrogen
agonist for all responses in the MCF/TOT cells.

Additional markers of estrogen and antiestrogen respon-
siveness: regulation of progesterone receptor (PgR) and
transacrivarion of an estrogen-responsive gene construct

Expression of PgR is known to be under tight estro-
gen regulation. In parent MCF-7 cells, treatment with
107 M E, resulted in a four-fold increase in PgR
content (Table 1Ay Fable=2). In contrast, treatment
of MCF/TOT cells with E, had no significant effect
on PgR level (26.8 £2.2 vs 15.3 +5.2, respecdvely,
P>0.05). This was despite the presence of significant
levels of ER in MCF/TOT cells, about half that pre-
sent in the parent cell line (Fig. 5). A weak agonist
effect of TOT was observed in parent MCF-7 cells in
terms of PgR induction, but interestingly, TOT, like

Table 1. Markers of estrogen and antiestrogen responsiveness:
regulation of progesterone receptor and transactivation of an es-
trogen-responsive gene construct

fmol *H-R5020 bound/10° cells

A Parent MCF-7 MCF/TOT
Conrrol vehicle 9.1+3.3 153 +5.2
100'°ME, 43.4 4+ 3.2* 26.8+2.2
107° M TOT 26.8 +5.2% 7.8+2.2
o O E
Fold change in ERE-tk-CAT activity
B Parent MCF-7 MCF/TOT
Control vehicle 1.0+0.2 1.0+ 0.3
10°ME, 11.54+2.1*% 8.2 +1.0%
10 M TOT 2.14+05 0.8+1.0
E, + TOT 3.1 4+0.5* 23+1.0
E, + ICI 164,384 0.5+0.7 0.9+0.7

A, Basal and stimulated progesterone receptor content was
determined by binding of the progestin, [*H]R5020, by
whole cell hormone binding assay after 4 days treatment
with ethanol vehicle control, 107'°M E, or 10°M
TOT. Values are the mean + SEM of triplicate flasks
from two experiments (*value significantly different from
the control vehicle treated cells at P< 0.05 by Student’s
t-test). B, Transactivation of ERE-tk-CAT, a reporter
plasmid containing a consensus estrogen response el-
ement linked to the Herpes simplex virus thymidine
kinase promoter and the CAT reporter gene. ERE-tk-
CAT (3 ug) was transiently cotransfected along with an
internal control plasmid containing the lac-Z gene, and
cells were treated with the ligands indicated for 24 h.
The calculated fold increase in the CAT activity of each
group was normalized for the f-galactosidase activity.
Values are expressed as the mean + SEM of at least three
experiments (*value significantly different from the con-
trol vehicle treated cells at < 0.05 by Student’s s-test)..

E,, had no significant effect on PgR in the MCF/
TOT subline (7.8 + 2.2 vs 15.3 % 5.2 fmol *H-R5020
bound/10° cells, respectively, P> 0.05). Both prolifer-
ation and PgR inducton thus demonstrated altered
regulation by E, and antiestrogen in MCF/TOT cells.

We also examined E, and antestrogen responsive-
ness using another end-point, namely a transiently
transfected estrogen-responsive gene construct con-
taining a consensus estrogen response element (ERE)
linked to a thymidine kinase (tk) promoter and the
chloramphenicol acetyltransferase (CAT) gene (ERE-
tk-CAT). In contrast to the loss of estrogen respon-
siveness of PgR in MCF/TOT cells, the transfected
estrogen-responsive gene behaved similarly in parent
MCF-7 and in MCF/TOT cells in terms of respon-
siveness to estrogen and antiestrogens. We observed
comparable fold inductions of ERE-tk-CAT activity
with 10° M E, in parent MCF-7 and MCF/TOT
cells (Table 1B). TOT treatment did not significantly
increase CAT activity in either subline, but it did sub-
stantially reverse the E,-stimulated CAT activity. The
response of ERE-tk-CAT was thus similar to that for
induction of pS2 mRNA by estrogen and antiestrogen
in that responses to these ligands were not altered in
the MCF/TOT subline as compared to the parent
MCF-7 cells.

Estrogen receptor content and regulation in MCF-7 and
MCF/TOT cells

Estrogen receptor (ER) content was determined by
whole cell binding assay and Western blot analysis.
Parent MCF-7 cells contained 59.2 + 4.6 fmol ER/

. 10° cells (Fig. 5) and this level was stable throughout
"the time period of these experiments (data not

shown). The MCF/TOT subline contained reduced
levels of ER (28.7 +2.4 fmol ER/10° cells) at 50
weeks of maintenance in TOT (Fig. 5). This level of
ER was maintained at 75 and 125 weeks of culture in
TOT (34.1 £1.1 and 30.5 + 1.3 fmol ER/10° cells,
respectively). A comparable decrease in ER protein
level in MCF/TOT cells was also observed when ana-
lysed by Western blot analysxs (37 £ 6% of parental
level; Fig. 5).

We also used Western blot analyses to assess the
ability of several agents to modulate the level of the
ER protein. In both the parent MCF-7 cells and
MCF/TOT cells, treatment with E, resulted in a
marked (ca. 60%) decrease in ER protein level,
whereas TOT treatment did not affect ER protein
level or increased it slightly, and cotreatment of either
subline with TOT prevented the decrease in ER pro-
tein content induced by treatment with E, alone
(Fig. 5). Similar to E,, treatment with retinoic acid
(107° M) markedly decreased the ER level in both
MCF-7 and MCF/TOT cells, and cotreatment with
TOT prevented the reduction in ER seen in response
to E; or retinoic acid treatment. ER level thus showed
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Parent MCF-7 MCF/TOT
Fmol 3HE,, Bound/10° Cells 59.7 £ 4.6 28.7 2.4
Relative ER Immunoreactivity: 100 + 4% 37 £ 6%

Basal ER Content

66 kD >

10°ME,
106 MTOT
106 M Retinoic acid

-+ |- - - + - + +

Fig. 5. Estrogen receptor (ER) content and effects of E;, TOT and retinoic acid on ER levels in parent MCF-7
and MCFITOT cells. Estrogen receptor content was determined by whole-cell hormone binding assay and
Western blot analysis. For the whole-cell binding assay, cells in T25 flasks were incubated with 10 nM [*H]E,
in the absence or presence of a 100-fold excess of unlabelled ligand at 37°C for 40 min (»# = 3; mean + SEM).
To measure immunoreactive ER, fractionated cellular protein was isolated from subconfluent T75 flasks trea-
ted with the indicated ligands for 24 h, as described in Materials and methods. ER protein was detected by
binding of the ER-specific monoclonal antibodies H226 and D547. Detection of ER with the ER-specific anti-
body, H222 (with an exon 7 epitope), gave the same relative levels for the 66 kDa ER protein.

the same regulation by Ez,; TOT and retinoic acid in
parental MCF-7 and MCF/TOT cells.

Reversibility of the TOT growth-stimulated phenotype of
MCFI/TOT cells

To test whether the altered growth phenotype of
the MCF/TOT cells was reversible, we removed TOT
from the growth medium for a period of 16 weeks
(Fig. 6, panel C) and compared growth response with
that of the parent MCF-7 (Fig. 6, panel A) and
MCEF/TOT cells (Fig. 6, panel B). As a modification,
we also generated another TOT-withdrawn subline
which received high levels of E, (107®M) simul-
taneously with the TOT withdrawal for 16 weeks
(Fig. 6, panel D). Interestingly, whereas the TOT-
withdrawn subline was no longer growth stimulated
by TOT, it did not revert to the TOT growth-inhib-
ited phenotype of the parent MCF-7 cells (Fig. 6,
panel A). Rather, this subline was refractory to the
effects of 107° M TOT (Fig. 6, panel C; 104 4 3% of
control values). Similar results were obtained with the
TOT-withdrawn, E,-supplemented subline
(111 +9% of control values). The TOT-withdrawn
subline also exhibited a partial return to the relatively
high ER levels of the parent MCF-7 cells (46.4 + 0.3
vs 59.2 + 4.6 fmol ER/10° cells, respectively) at 16
weeks of TOT deprivation. At 24 weeks of TOT

: MCE/TOT MCF/TOT
MCF-7 MCFE/TOT . TOT-Withdrawn
[¢] TOT- wt‘:grawn E;-Replaced
16 wk
600
A B [ D
Ez
= soof 3 3 +
e
& 400}
o
S
® 300 E, E,
o - 3
£ 200} F - 2t
o o]
a ICH /TOT‘ TOT TOT
O o0f k’ ¢ N ao | ol o
TOT 8 ict g| w© gl @ B
12 10 8 -6 12 410 8 6 -12 10 8 -6 12 -10 -8 -6
log (M)
ER (tmot IHE,
bound/106 cells) 59.7 +4.6 28.7+24 464103 339103

Fig. 6. Reversibility of the TOT growth-stimulated phenotype
of the MCF/TOT cells. MCF/TOT cells were cultured in the
absence of TOT with or without supplementation with 10~ M
E, for 16 weeks (panels C and D) and growth responses were
compared with those of the parental MCF-7 (panel A) and
MCFI/TOT cells (panel B). Growth responsiveness to E,,
TOT and ICI 164,384, alone or in combination, was deter-
mined by MTT assay from quadruplicate wells. Closed circle,
E;; closed triangle, TOT; closed square, ICI 164,384; open
circle, 10°M E,+10°M TOT; open triangle, 10°M
E,+2x10°*M ICI 164,384; open square, 10°M
TOT +2x10™°M ICI 164,384. Values are expressed as per-
centages of vehicle-treated control wells. Standard errors
were less than 10% and are not shown. Estrogen receptor
content was determined by whole-cell hormone binding assay
(n = 3; mean + SEM).
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deprivation, there was no change in the proliferative
profile of the sublines compared to the 16 week
TOT-withdrawn cells; both were moderately growth
stimulated by E,, growth inhibited by ICI 164,384
and refractory to TOT (data not shown).

Estrogen receptor sequence analysis

To assess if alterations in ligand response in the
MCF/TOT cells might be due to mutation of the ER,
we amplified and sequenced a 1 kb region of the ER
encompassing the hormone binding domain.
Polymerase chain reaction yielded three ¢cDNA pro-
ducts, which by direct sequence analysis were deter-
mined - to be the wild type, exon 5 deleton variant
(AE5) and the exon 7 deletion variant (AE7). The
presence of these variants in breast cancers has pre-
viously been described [25, 26]. Dideoxy sequence
analysis failed to reveal point mutations in the ERs
from parental MCF-7 or MCF/TOT cells.

120 -
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Q\
- \
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Retinoic Acid (M)
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Fig. 7. Decreased responsiveness of MCF/TOT cells to the
growth-inhibitory effects of retinoic acid. Cells were seeded
at 2000 cells/well in 96-well plates in quadruplicate and trea-
ted with the indicated concentrations of retinoic acid for 6
days, with a media change after 3 days. Growth inhibition by
retinoic acid was determined by MTT assay. The solid and
open markers represent the parent MCF-7 and MCF/TOT
cells, respectively; circles, retinoic acid treatment alone;
squares, S5X 10°M retinoic acid+10°M E,; triangles,
5x 10~ M retinoic acid + 10°M TOT. Values are expressed
as the percentage of vehicle-treated control wells. Values for
the rednoic acid dose-response curve represent the
mean + SEM of three separate experiments. Values for
cotreatment with retinoic acid plus E, or TOT represent the
mean + range of two separate experiments.

Decreased responsiveness of MCF/TOT cells to the
growth-inhibitory effects of retinoic acid

Retinoic acid analogues have been shown to inhibit
the growth of a number of cancer cell lines, including
MCF-7 cells [27]. To determine whether TOT-main-
tained MCF-7 cells differed in sensitivity to retinoic
acid, we performed the dose-response growth study
shown in Fig. 7. Parent MCF-7 cells were strongly
growth inhibited by retinoic acid. Some growth sup-
pression was observed even at very low concentrations
of retinoic acid (8 x 1072 M), and a growth suppres-
sion of approximately 75% was observed in MCF-7
cells at the highest concentration tested, 5x 10°M .
retinoic acid. MCF/TOT cells were also sensitive to
the growth suppressive effects of retinoic acid, albeit
to a much lesser extent. MCF/TOT cells exhibited
only 43 + 2% growth suppression at 5x 107 M reti-
noic acid. Cotreatment with retinoic acid and E,
reversed the growth-suppressive effects of treatment
with retinoic acid alone in both sublines (Fig. 7).
Interestingly, whereas cotreatment with retinoic acid
and TOT had no additional suppressive effect in
parent MCF-7 cells (Fig. 7, filled triangle), TOT
fully reversed the growth suppression by retinoic acid
(Fig. 7, open triangle), indicating that TOT was act-
ing as an agonist (stimulatorj like E,, in the MCF/
TOT cells.

MCF/TOT
MCF/TOT (
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Fig. 8. Loss of growth inhibition by MCF/TOT cells in re-
sponse to exogenous TGF-B1. Deprivadon of TOT from
MCFITOT cells for 16 weeks, where indicated, was per-
formed as described in the Materials and methods section.
Cells were seeded at 2000 cells/well in triplicate in 24-well
dishes. Two days later the wells were washed in serum-free
media and then treated with TGF-$1 with or without 10° M
TOT. After 4 days, the cells were incubated with 0.5 uCi
PPH]thymidine at 37°C for 2 h. Incorporated [*H]thymidine
was determined as described in Materials and methods.
Basal [’Hjthymidine incorporation rates were comparable
between the two sublines. Treatment with TGF-$1 in serum-
supplemented or in serum-free IMEM vyielded comparable
results, as did measurement of cell number by MTT assay.
Values are expressed as a percentage of vehicle-treated con-
trol wells (n = 3; SEM).
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Fig. 9. Elevated TGF-f expression in X&F/TOT cells. TGF-
B1, B2 and B3 mRNA expression in near-confluent cell cul-
tures was determined by ribonuclease protection assay of
10 ug of total RNA, and normalized against human acidic
phosphoprotein PO (36B4) as an internal control. RNase pro-
tection assays were quantitated by densitometric analyses of
autoradiograms, as described in Materials and methods.
Values represent the average and range of two experiments.
Total and percentage active secreted FPPEE protein were
determined from duplicate conditioned media collections by
inhibition of [PH]thymidine incorporation in Mv 1 Lu cells.

Values represent the mean and range from the two separate A

experiments.

Loss of growth suppression by exogenous TGF-B1 in
MCF/TOT cells

TGF-f1 is of interest due to its ability to inhibit
the growth of human breast cancer cells [9].
Treatment with exogenous TGF-f1 resulted in dose-
dependent decreases in [3H]thymidine incorporation
in parent MCF-7 cells (Fig. 8). An inhibition of 40%

was observed at 1 ng/ml TGF-§1, and a maximal in-
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hibition of approximately 60% was observed at 5 or
10 ng/ml TGF-B1. Further suppression of growth was
accomplished by cotreatment with TOT which
resulted in an additional suppression of 20+ 3%
(data not shown). In contrast, [’H]thymidine incor-
poration of MCF/TOT cells was unaffected by treat-
ment with exogenous TGF-f1, even at 25 ng/ml.
Sensitivity to TGF-f1 was re-established upon with-
drawal of TOT from MCF/TOT cells. Removal of
TOT from MCF/TOT cells for 16 weeks, either with
or without supplementation with E,, returned TGF-
f1 sensitivity to that observed in the parent MCF-7
cells (Fig. 8).

Production of TGF-8 mRNA and protein in MCF-7 and
MCF/TOT cells

TGF-f mRNA level was monitored in parent
MCF-7 and MCF/TOT cells by ribonuclease protec-
tion assay. As shown in Fig. 9, MCF/TOT cells
TEpIE sed approximately eight-fold elevated levels of
and GF-$2 mRNA, and approximately four-fold el-
evated levels of TGF-f3 mRNA, as compared to
parent MCF-7 cells. The levels of bioactive TGF-§
protein increased proportionally, as determined by a
mink lung cell bioassay. No substantial changes in the
proportion of latent and active secreted TGF-§ were
observed (Fig. 9). Therefore, MCF/TOT cells which
no longer responded to the growth-regulating effects
of exogenous TGF-$1 (Fig. 8), secreted elevated
levels of TGF-f protein. We next sought to examine
if the MCF/TOT cells showed alterations - in TGF-§
receptor expression.

MCF-7 MCF/TOT MCF/TOT
(CDFCS) (CDFCS) (FCS+TOT)

c TGFp1 c TGFB1 c TGFB1

- Type Il TGFB
receptor

— Type | TGFP
receptor

- Actin

Fig. 10. Expression and ligand-induced regulation of type I and II TGF-# receptors. Total RNA from MCF-7
and MCF/TOT cells was isolated from subconfluent monolayers grown in 5% FCS MEM, with 10°M TOT
where indicated, or in 5% CDFCS IMEM. Cells were treated without (C, control) or with 10 ng/ml TGF-f1 for
8 h. Thirty micrograms total RNA was hybridized with a 300 bp riboprobe for TGF-§ type I receptor (220 bp
protected fragment) and a 360 bp riboprobe for TGF-$ type II receptor (260 bp protected fragment) and a
300 bp riboprobe for human R-actin (125 bp protected fragment), used as an internal control. RNase protection
assays were performed and quantitated as described in Fig. 9 and the Materials and methods section. For
comparison, the levels of type I and II TGF-# receptors in MDA-MB-231 breast cancer cells are shown.
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Expression and ligand-induced regulation of type I and 1I
TGF-B receptor mRNAs and assessment of TGF-B1 bind-
ng

Since TGF-f signals through a heteromeric com-
plex of the type I and II TGF-f/activin receptors
which possess serine-threonine kinase activity [28],
we measured expression of type I and II TGF-g
receptor mRNAs by ribonuclease protection assay
(Fig. 10). There were no significant changes in the
levels of these receptor mRNAs between the parent
MCF-7 and MCF/TOT cells when lanes were nor-
malized for the amount of RNA loaded. Furthermore,
neither treatment with TGF-81 for 8 h, nor transfer
from full serum to steroid-depleted serum, influenced
expression of these mRNAs. These results show that
the loss of sensitivity of the MCF/TOT cells to the
growth-inhibitory effects of exogenous TGF-8 can not
be attributed to loss of expression of type I or II
TGF-$ receptors. We also performed [125I]TGF—ﬁ1
binding assays to confirm that the receptor moieties
present were functionally able to bind exogenous
TGF-f1. We found 282430 (n=3) ['*IJTGF-g1
binding sites/cell in the parent MCF-7 cells. The
MCF/TOT cells showed an approximate three-fold
increase in the number of TGF-f1 binding sites per
cell (949 + 102, P<0.05). Therefore, the loss of
growth-inhibitory response to exogenous TGF-f1 by
MCF/TOT cells is not due to a decrease in TGF-f1
binding sites. '

DISCUSSION

This report describes a new subline of MCF-7 cells
which, in response to long-term exposure to TOT,
developed resistance to the growth-inhibitory effects
of this antiestrogen and also altered sensitivity to the
growth-suppressive effects of exogenous TGF-f1 and
retinoic acid. Furthermore, the weak stimulation of
MCF/TOT cell proliferation by TOT implies that
growth resistance in these cells really corresponds to a
weak growth stimulation by this agent. Interestingly,
these MCF/TOT cells were still responsive to sup-
pression by the pure antestrogens ICI 164,384 and
ICI 182,740, implying that these two categories of
antiestrogens must act, at least in part, by somewhat
different mechanisms. Although one proposed mech-
anism of antiestrogen resistance is loss or mutation of
estrogen receptor [29-32], our observation that the
phenotype of the MCF/TOT cells is at least partly re-
versible following withdrawal from TOT implies a
non-mutational change in these cells, consistent with
our observation that ER in the parental and MCF/
TOT cells had identical hormone-binding domains,
as determined by DNA sequencing analysis.

Response-specific antiestrogen resistance

Whereas tamoxifen is associated with growth inhi-
bition of breast tumors, it is also a cell- and promo-
ter-dependent agonist. Tamoxifen shows tissue- and
gene-specific estrogen-like effects, being a good estro-
gen agonist in bone and uterine cells and a good
stimulator of some, but not all, estrogen-regulated
genes [7, 33). The ER is now known to interact with
multiple proteins, termed coactivators and corepres-
sors (reviewed in [34]), that contact different regions
of the ER and can influence ER transcriptional ac-
tivity greatly. Differences in the interaction of anties-
trogen-ER  complexes with coactivators and
corepressors in different cells and at different gene
sites could account for the cell- and gene-selective
actions of antiestrogens in parental ER-positive breast
cancer cells and in our breast cancer cells selected for
resistance to growth suppression by TOT. It is per-
haps to be expected, as we have observed in the pre-
sent studies, that the alteradon in TOT-response
profile of MCF/TOT cells varied with the end-point
monitored. Whereas TOT behaved agonistically in
terms of proliferation in the MCF/TOT subline, there
was a complete loss of its partial agonistic effects on
induction of progesterone receptor expression
(Table 1). Interestingly, estrogen also failed to
increase progesterone receptor in this subline, as
reported in other tamoxifen-resistant breast cancer
cells [32, 35]. We found, however, that the usual
stimulatory and inhibitory effects of E, and TOT, re-
spectively, were maintained in terms of regulation of
pS2 mRNA induction and ERE-tk-CAT transactiva-

“don. These results demonstrate that loss of TOT

growth inhibition is not synonymous with a global
loss of responsiveness to TOT. Other MCF-7 cell
variants which were tamoxifen-stimulated in terms of
growth also did not exhibit corresponding tamoxifen
stimulation of the estrogen-regulated mRNAs pNR-1,
-2, -25, and cathepsin-D [36].

In the present work, the growth of MCF/TOT cells
was dramartically suppressed by treatment with the
pure antiestrogen, ICI 164,384, and this antiestrogen
antagonized the effects of either E, or TOT on
growth and gene regulation in MCF/TOT cells. ICI
164,384 has been shown to block ER action by accel-
erating ER degradation [37, 38] as well as inefficiently
promoting transcription activation [38]. Unlike ICI
164,384, TOT treatment does not decrease ER pro-
tein content (Fig. 5; and [38]). These results, as well
as the observed beneficial response to the ICI
164,384-related pure antiestrogen ICI 182,780 in
tamoxifen-resistant breast cancers in women [39] and
nude mouse tumor models [40, 41}, support the po-
tential clinical use of ICI 164,384-type antiestrogens
in the advent of tamoxifen resistance.
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Structure of the estrogen receptor

Whereas it seems plausible that mutations in the
ER gene could affect ligand interpretation by the ER,
our finding that TOT-stimulated growth in MCF/
TOT cells is partly reversible upon withdrawal of
TOT for a period of 16 weeks suggests that a readily
modifiable process, rather than a mutational event, is
responsible for the antiestrogen insensitivity. Alternate
splicing of the ER mRNA into receptor species with
different functions would allow for modulation of the
receptor protein, without gene mutation. A number of
ER variant mRNAs are expressed in breast neoplasms
and some of these variants have been found to possess
either constitutively active or inhibitory receptor ac-
dvity [25, 42].

Our analysis of the nucleotide sequence of the hor-
mone-binding domain of the ER revealed the pre-
~ sence of wild-type and exon 5 and exon 7 deletion
variants, but failed to detect any mutations or other
splicing variants in the parent MCF-7 and MCF/
TOT sublines. Analysis of the ERs of other hormone-
resistant sublines of MCF-7 or T47D human breast
cancer cells by RNase protection mapping [43] or
PCR amplification [44] also failed to detect variants
or mutants of the ER. Recently, Karnik er al. [45]
screened 20 tamoxifen-sensitive and 20 tamoxifen-re-
sistant human breast tumors by single-strand confor-
mation polymorphism and found ER mutations were
neither frequent nor correlated with an antiestrogen-
resistant phenotype. The altered hormonal responsive-
ness seen in MCF/TOT cells is thus unlikely to be
due to mutational change in the ER.

Cross-talk with retinoids and transforming grbwzh Sactor-$
in the antiestrogen resistance of MCF/TOT cells

The antiestrogenic character of the retinoids has
implicated them as candidates for combination pallia-
tive therapy in ER-containing breast cancers. We
found that our MCF/TOT cells exhibited decreased
sensitivity to retinoic acid. This may be explained by
the fact that retinoids, which have been shown to
modulate estrogenic regulation of a number of
mRNAs, including those for pS2 and the growth-
stimulator TGF alpha [9], are thought to exert their
growth-inhibitory effects through the ER as well as
their own receptors [10, 27, 46]. Therefore, the
reduced retinoic acid-induced growth suppression we
observed could be, at least in part, due to the reduced
levels of ER present in the MCF/TOT subline as
compared to parent MCF-7 cells. This would be con-
sistent with recent observations that the introduction
of ER into ER-negative breast cancer cells re-estab-
lishes retinoic acid growth inhibition [10].

We examined TGF-f production and TGF-§
receptors in our parental and MCF/TOT cells
because expression of TGF-$ is known to be signifi-
cantly influenced by sex steroid hormones [47-50].

Because TGF-f1 was a good growth inhibitor in our -
parental MCF-7 cells (Fig. 8), TGF-f resistance
might thwart the suppressive, beneficial actions of
tamoxifen. We observed that the MCF/TOT subline
was resistant to the growth-inhibitory effects of ex-
ogenous TGF-$1 and that this insensitivity to added
TGF-f1 was reversible following withdrawal of TOT.
We also failed to observe a decrease in the expression
of type I or II TGF-§ receptor mRNAs or a decrease
in the binding of [***IJTGF-B1 in MCF/TOT cells.
The TGF-$ receptor system is highly complex, how-
ever, and includes at least one other characterized
protein, the type III TGF-§ receptor, and numerous
receptors with TGF-f cross-reactivity [28] which -
were not evaluated in the present work.

Of note, MCF/TOT cells showed elevated pro-
duction of TGF-Bs. The cells contained eight times
more TGF-f1 and TGF-$2 mRNAs and four times
more TGF-$3 mRNA. They secreted three times
more TGF-f bioactive protein and eight times more
total (latent plus active) TGF-§ protein than parental
MCF-7 cells. Therefore, we do not know if their
insensitivity to added TGF-f1 was due to the high
level of TGF-§ production possibly resulting in the
generation of maximum autocrine TGF-§ activity.
We think this is unlikely, however, because it is worth
noting that MCF/TOT cells grow very quickly (ca.
1.6 day doubling time) in the presence of TOT and
therefore are not being growth suppressed by the
TGF-fs either being made and secreted by the cells,
or by the TGF-f1 we added exogenously. In addition,
we previously reported that short-term estrogen-
deprived MCF-7 cells contained 10 times more TGF-
B1 mRNA, eight times more TGF-2 mRNA and five
times more TGF-3 mRNA, and secreted four times
more bioactive TGF-f and three times more total
(active plus latent) TGF-f than parental MCF-7
cells, yet these cells still showed normal, i.e. full, sen-
sitivity to growth suppression by added TGF-81 [20].
More detailed analyses of the TGF-f pathway in the
MCF/TOT cells will be needed to understand fully
the changes induced by antiestrogen exposure.

Our findings highlight the response-specific nature
of antiestrogen resistance in breast cancer cells. To
our knowledge, this is the first study to compare re-
sponses to antiestrogens and to the growth-inhibitory
factors retinoic acid and TGF-$ in breast cancer cells
selected for resistance to tamoxifen. The reduced sen-
sitivity to these agents in the MCF/TOT cells, and
the restoration of responsiveness to these agents after
TOT withdrawal suggests a possible commonality of
components or pathways in their regulation of pro-
liferation of these human breast cancer cells. Our
findings indicate also that one mechanism of antes-
trogen resistance, as seen in MCF/TOT cells, may
involve alterations in growth factor and other hormo-
nal pathways that affect the ER response pathway.
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" EXTENDED ABSTRACTS

SYMPOSIUM 6: STEROID HORMONES: BREAST AND
PROSTATE CANCER.

Monday, April 22, 8:00—11:00 a.m., Hall A

Monday, April 22, 8:05-8:35 a.m., Hall A

Estrogen receptor bloactlvmes and interactions with signal transduction pathways
in breast cancer cells. Benita S. Katzenellenbogen, Departments of Molecular &
Integrative Physiology, Cell & Structural Biology, University of Illinois, College of
Medicine, Urbana, IL 61801.

We are interested in understanding how estrogens, antiestrogens and growth
factors regulate the proliferation and properties of human breast cancer cells.
Fascinating interconnections exist among the different signaling pathways stimu-
lated by the multiple factors impinging on breast cancer cells. Since each signaling
pathway involves an effector molecule interacting with a receptor to cause a
response, attention has been directed to understanding the nature of the effector
ligand-receptor interaction, the factors that regulate the levels of these receptors by
controlling their synthesis and degradation, and the factors that modulate the
activity of the ligand-receptor complexes. The actions of estrogens in stimulating
gene transcription and ultimately cell proliferation are modulated by progestins and
antagonized by antiestrogens. In an effort to understand how antiestrogens act, we
have used affinity labeling and site directed and random chemical mutagenesis to
investigate how estrogen receptor (ER) discriminates between agonists and antag-
onists, and how these ligands influence subsequent chromatin/gene interactions of
the receptor (1). We have found that the level and activity of estrogen receptors and
progesterone receptors are influenced by hormone, antihormone, growth factors and
activators of protein kinases. The observation that these agents influence the
efficacy of the ER in stimulating gene transcription and that protein kinase inhib-
itors and antiestrogens suppress the stimulation of ER-mediated gene activation
suggested the likely involvement of phosphorylation pathways. Direct phosphory-
lation studies document that many of these agents do alter the magnitude of ER
phosphorylation, and specific sites of phosphorylation have been found to aiter
transcriptional activity and other properties of the receptor (2,3). The response to
estrogen involves alteration in the production of growth factors, growth factor
receptors and protooncogenes believed to be involved in the growth response, as
well as stimulation of progesterone receptor production which increases the cells’
sensitivity to progestin, and production of intracellular and secreted proteins in-
cluding plasminogen activators that may play a role in increasing the metastatic
potential of the cells.

Antiestrogens, acting via the estrogen receptor, evoke conformational changes in the
ER and inhibit the effects of estrogens. Although the binding of estrogens and anties-
trogens is mutually competitive, studies with ER mutants indicate that some of the
contact sites of estrogens and antiestrogens are likely different. Some mutations in the
hormone binding domain of the ER and deletions of carboxyl-terminal regions result in
ligand discrimination mutants, i.e. receptors that are differentially altered in their ability
to bind and mediate the actions of estrogens vs. antiestrogens (1,4). Mutations in the
activation function-2 region result in ERs which are transcriptionally inactive with
estradiol and have potent dominant negative inhibitory activity, being able to suppress
the actions of wild type ER at low molar ratios (5). We have examined the role of
specific ER functions and domains in this transcriptional repression and find that
competition for estrogen response element binding, formation of inactive heterodimers
and specific transcriptional silencing can all contribute to the dominant negative
phenotype, and that these receptors suppress the activity of the wild type ER by acting
at multiple steps in the ER-response pathway (6).

Studies in a variety of cell lines and with different promoters indicate marked cell
context- and promoter-dependence in the actions of antiestrogens and variant ERs.
In several cell systems, estrogens and protein kinase activators such as cAMP
synergize to enhance the transcriptional activity of the ER in a promoter-specific
manner (7). In addition, cAMP changes the agonist/antagonist balance of tamoxifen-
like antiestrogens, increasing their agonistic activity and reducing their efficacy in
reversing estrogen actions (8). Estrogens, as well as protein kinase activators such
as ¢cAMP and some growth factors increase phosphorylation of the ER and/or
proteins involved in the ER-specific response pathway. These changes in phosphor-
ylation alter the biological effectiveness of the ER. Receptor mutants are being
utilized to map sites on the ER important in this transcriptional synergism/enhance-
ment. Our observations suggest that changes in cellular phosphorylation state will
be important in determining the biological activity of the ER and the effectiveness
of antiestrogens as estrogen antagonists.

We have developed several model cell systems for studying the changes in breast
cancer cells that accompany the progression from hormone-dependence to hormone-
autonomy and some changes associated with the development of antiestrogen resistance
and, hence. failure to respond to antiestrogen therapy. These estrogen growth-autono-
mous and tamoxifen-resistant breast cancer cell lines show changes in their production
of, and responsiveness to, TGFa and TGFB (9). These alterations may accompany the
conversion of the cells to an antiestrogen growth-resistant phenotype. Multiple inter-
actions among different cellular signal transduction systems are involved in the
regulation of breast cancer cell proliferation and gene expression by estrogens and
antiestrogens.
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The human estrogen receptor (ER) is a ligand-induc-
ible transcription factor that contains two transcrip-

tional activation functions, one located in the NH,-ter- -

minal region of the protein (AF-1) and the second in the
COOH-terminal region (AF-2). Antiestrogens, such as
trans-hydroxytamoxifen (TOT), have partial agonistic
activity in certain cell types, and studies have implied
that this agonism is AF-1-dependent. We have made pro-
gressive NH,-terminal and other segment deletions and
ligations in the A/B domain, and studied the transcrip-
tional activity of these mutant ERs in ER-negative MDA-
MB-231 human breast cancer and HEC-1 human endo-
metrial cancer cells. Using several estrogens and several
partial ‘agonist/antagonist antiestrogens, we find that
estrogens and antiestrogens require different regions of
AF-1 for transcriptional activation. Deletion of the first
40 amino acids has no effect on receptor activity. Anti-
estrogen agonism is lost upon deletion to amino acid 87,
while estrogen agonism is not lost until deletions pro-
gress to amino acid 109. Antiestrogen agonism has been
further defined to require amino acids 41-64, as deletion
of only these amino acids results in an ER that exhibits
100% activity with E,, but no longer shows an agonist
response to TOT. With A/B-modified receptors in which
antiestrogens lose their agonistic activity, the antiestro-
gens then function as pure estrogen antagonists. Our
studies show that in these cellular contexts, hormone-
dependent transcription utilizes a range of the amino
acid sequence within the A/B domain. Furthermore, the
agonist/antagonist balance and activity of antiestrogens
such as TOT are determined by specific sequences
within the A/B domain and thus may be influenced by
differences in levels of specific factors that interact with
these regions of the ER.

The estrogen receptor (ER)! is a ligand-inducible transcrip-
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tion factor that regulates gene expression through interaction
with cis-acting DNA elements called estrogen response ele-
ments (EREs) (for reviews, see Refs. 1-5). Like other steroid
hormone receptors, the ER contains specific domains responsi-
ble for functions leading to transcription of target genes, such
as ligand binding, DNA binding, and transactivation (6-8).
The ER contains two distinct, non-acidic activation functions,
one activation function at the NH, terminus (AF-1) and a
second, hormone-dependent activation function at the COOH
terminus (AF-2), in the hormone binding domain (8-12). AF-2
is highly conserved among species and other nuclear hormone
receptors (1, 12, 18), whereas the A/B domain at the amino
terminus of the ER, which includes AF-1, is less well conserved
among different species and other nuclear receptors (1, 13, 14).
The activity of each activation function of ER is cell- and gene
promoter-dependent. AF-1 can exhibit transcriptional activity
in the absence of AF-2 (8) in some cell contents but, in most cell
and promoter contexts, both AF-1 and AF-2 function in a syn-
ergistic manner and are required for full receptor activity (6, 8,
15-22). .

Transactivation of estrogen-responsive genes by ER can be
antagonized by antiestrogens such as ¢rans-hydroxytamoxifen
(TOT) and ICI 164,384 (18, 19). One mechanism by which these
antiestrogens inhibit ER action is by competition with estradiol
(E,) for binding to the ER. Although antiestrogen-occupied ER
binds estrogen response DNA elements in cells (23, 24), it is
thought that antiestrogens promote a conformational change
which is- different from that induced by E, (24, 25). Some
antiestrogens, like TOT, have partial agonistic activity in cer-
tain cells, such as chicken embryo fibroblasts (CEF) and MDA-
231 human breast cancer cells (18, 26). The cell and promoter
dependence of TOT agonism has been attributed to the cell and
promoter specificity of AF-1 activity (15-18). Previous studies
using chimeric receptors have shown that TOT is unable to
induce AF-2 activity, but that TOT can be a strong agonist in
cellular and promoter contexts where AF-1 is an efficient tran-
scriptional activator (11, 18, 21).

We have investigated the A/B domain of the ER and its role
in the transcriptional activity of ER elicited by estrogens and
some antiestrogens, and we find that different regions within
this domain are required for transcriptional stimulation by
estrogen versus antiestrogen. In the studies presented, we dem-
onstrate that a specific 24-amino acid region of AF-1 of the
human ER is necessary for agonism by TOT and other partial
agonist/antagonist antiestrogens, but is not required for E,-de-
pendent transactivation. As a consequence, the activity of es-
tradiol and the estrogen agonist/antagonist character of TOT
depended markedly, but not always concordantly, on the se-

2-phenylbenzofuran; BT, 2-phenylbenzothiophene; PCR, polymerase
chain reaction.
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quences present within the A/B domain in the ER. Our studies
show that in the context of the full-length ER, hormone-de-
pendent transcription utilizes a broad range of sequences
within the A/B domain and suggest that differences in the
agonist/antagonist character of antiestrogens observed in dif-
ferent cells could be due to altered levels of specific factors that
interact with these regions.

MATERIALS AND METHODS

Chemicals and Materials — Cell culture media were purchased from
Life Technologies, Inc. Calf serum was from Hyclone Laboratories (Lo-
gan, UT) and fetal calf serum was from Sigma. [**C]Chloramphenicol
(50—60 Ci/mmol) was from DuPont NEN. The antiestrogens TOT and
ICI 164,384 were kindly provided by Dr. Alan Wakeling, Zeneca Phar-
maceuticals, Macclesfield, United Kingdom. The antiestrogens 2-phen-
ylbenzofuran (BF) and 2-phenylbenzothiophene (BT) were generously
provided by Dr. E. von Angerer, University of Regensburg, Germany.

Plasmid Constructions—The ER expression vectors, all containing
human ER (hER), are derivatives of pCMV5-hER (27). NH,-terminal
deletion mutants N21 and E41 were constructed by replacement of the
pCMV5-hER SstII fragment with a PCR-generated fragment contain-
ing a new start codon and an SstIl site at amino acids 21 and 41,
respectively. NH,-terminal deletion mutants A87 and M109 were con-
structed by replacement of the pCMV5-hER SstI/Xmalll fragment
with a PCR-generated fragment containing an Ss¢II site at amino acids
87 and 109, respectively. Estrogen receptor deleted of amino acids
41-64 (A41-64) was constructed by replacing the SstII fragment of
pCMV5-hER (containing residues 1-64) with a PCR-generated frag-
ment containing residues 1-40 with an Ss¢II site after amino acid 40.
A87-108 was constructed by inserting a PCR-generated fragment con-
taining an SstII site at amino acid 87 into the SstII site of M109 and
insertion of the Xmalll fragment from this construct to replace the
Xmalll fragment of pCMV5-hER. 41-66-CDEF was constructed by
replacing the XmalIl fragment of E41 with a PCR-generated fragment
containing an Xmalll site at amino acid 180. 41-87-CDEF was con-
structed by replacing the Xmalll fragment from pCMV5-hER with two
PCR-generated fragments, amino acids 41-87 and amino acids 180-
311 containing BglII sites at amino acids 88 and 179. 41-109-CDEF
was constructed in a similar manner to 41-87-CDEF with a PCR-
generated fragment, amino acids 41-109, containing a BglII site at
amino acid 110. AAB ER was constructed as described previously (28).
The sequences of all ER mutants utilized were confirmed by dideoxy
sequencing methods to assure accuracy. The (ERE);-pS2-chloramphen-
icol acetyltransferase (CAT) reporter was constructed as described pre-
viously (27). The plasmid pCMVg, which contains the B-galactosidase
gene, was used as an internal control for transfection. The plasmid
pTZ19R, used as carrier DNA, was provided by Dr. Byron Kemper of the
University of Illinois.

Cell Culture and Transient Transfections—MDA-MB-231 human
breast cancer cells were maintained in Leibovitz’s L-15 Medium with 10
mM HEPES, 5% calf serum, 100 units of penicillin/ml (Life Technolo-
gies, Inc.), 100 ug of streptomycin/ml (Life Technologies, Inc.), 25 pg of
gentamycin/ml, 6 ng of bovine insulin/ml, 3.75 ng of hydrocortisone/ml,
and 16 ug of glutathione/ml. Human endometrial cancer (HEC-1) cells
were maintained in minimum essential medium plus phenol red sup-
plemented with 5% calf serum and 5% fetal calf serum, 100 units of
penicillin/ml (Life Technologies, Inc.), and 100 ug of streptomycin/ml
(Life Technologies, Inc.). MDA-231 cells or HEC-1 cells were grown in
minimum essential medium plus phenol red supplemented with 5%
charcoal/dextran-treated calf serum for 2 days prior to transfection.
Cells were plated at a density of 8 X 10° cells/100-mm dish in phenol
red-free Improved minimal essential medium and 5% charcoal/dextran-
treated calf serum and were given fresh medium 24 h before transfec-
tion. All cells for transfection were maintained at 37 °C in a humidified
CO, atmosphere. Cells were transiently transfected by the CaPO, co-
precipitation method (29). One ml of precipitate contained 0.8 ug of
pCMV3B as internal control, 6 ug of an ERE-containing reporter plasmid
(ERE),-pS2-CAT, 100 ng of ER expression vector, and pTZ19R carrier
DNA to a total of 15 ug of DNA. Cells remained in contact with the
precipitate for 4 h and were then subjected to a 2.5-min glycerol shock
(20% in transfection medium). Cells were rinsed with Hanks’ balanced
salt solution and given fresh medium with hormone treatment as
indicated.

Promoter Interference Assays—MDA-MB-231 cells were transiently
transfected with 2 ug of CMV-(ERE),-CAT reporter plasmid (23), 0.8 ug
of pCMVB, 12.2 ug of pTZ19R, and 100 ng of ER expression vector/
100-mm dish of cells. Cells were treated as described previously for
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transient transfection, and CAT assays were performed on cell extracts.

Immunoblot Assays—COS-1 cells were transfected in 100-mm dishes
with 10 pg of expression vector for wild type ER or ER derivatives and
5 ug of pTZ19R carrier plasmid. Whole cell extracts were collected by
centrifugation and fractionated on a polyacrylamide gel. Proteins were
transferred to nitrocellulose and immunoblots were performed using
ER monoclonal antibody H222 as described previously (30).

RESULTS

Different Regions in the A/B Domain Are Important for Es-
tradiol- and trans-Hydroxytamoxifen-dependent Transcrip-
tional Activity — Our studies were aimed at identifying regions
within the A/B domain that are responsible for E,-dependent
transcription and for antiestrogen agonism. We have generated
ER derivatives that contain increasing NH,-terminal deletions
or other deletional changes in the A/B domain. Fig. 1 shows the
structure of the ER derivatives used in this study and the
relative expression levels of the receptors observed in cells.
Western immunoblot analysis showed that receptors of the
predicted sizes were being produced in the cells and that all of
the A/B domain altered receptors (Fig. 1B) were expressed at
levels very similar to that of the wild type ER.

These ER mutants were then analyzed for their ability to
transactivate an ERE-containing pS2 promoter-reporter gene
in ER-negative MDA-231 human breast cancer cells. Wild type
ER or receptors with deletions of amino acids 1-20 (N21), 1-40
(E41), 1-86 (A87), 1-108 (M109), or 1-179(AAB) were tran-
siently transfected into MDA-231 cells, and transcriptional
activity was measured in response to increasing concentrations
of E,. ER mutants N21, E41, and A87 showed dose-response
curves for transcriptional activity virtually identical to that
observed with wild type ER (Fig. 24). In contrast, deletion of
the first 108 amino acids resulted in receptors that showed a
great loss of activity; M109 receptors showed only about 20% of
wild type ER transcriptional activity at 1072 M E,, suggesting
that residues between amino acid 87 and 108 are important for
estradiol-stimulated activity. Deletion of the complete A/B do-
main (amino acids 1-179) gave a receptor that showed no
activity in this cell system.

Similar studies were conducted using the NH,-terminal de-
letion mutants to examine transcriptional response to the tri-
phenylethylene compound ¢rans-hydroxytamoxifen, TOT (Fig.
2B). MDA-231 cells were again used in these studies, since with
wild type ER, TOT behaves as a relatively strong agonist. TOT
(107 M) stimulates transcriptional activity to approximately
30% the level evoked by maximal (1078 M) E, stimulation.
Compared with the wild type ER, deletion of amino acids 1-20
or 1-40 had no effect on either the E, response or TOT ago-
nism. However, deletion of amino acids 1-86, which had no
effect on E,-induced activity, abolished TOT agonism com-
pletely (Fig. 2B). The further deleted mutant, M109, which was
transcriptionally impaired in response to E, treatment, did not
exhibit any measurable response to TOT. The loss of TOT
agonism observed selectively with the A87 mutant suggested
that sequences between 41 and 87 may be important contrib-
utors to TOT agonism, but are not essential for the response to
E,.
Deletion mutant A41-64, which lacks only amino acids 41—
64, was constructed and tested for its transactivation ability in
response to E, and TOT. A41-64 retained 100% of wild type
E,-dependent activity (Fig. 2C) yet displayed no measurable
response to TOT (Fig. 2D). These results are consistent with
the loss of TOT response with the A87 mutant as they implicate
residues 41-64 as a major contributor to TOT agonism but not
to E, response.

A/B Deletion Mutants Exhibit Differential Response to Other
Estrogensand Antiestrogens —Furtherexaminationoftheligand-
dependent transcriptional activity of these mutants revealed
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Fic. 1. Structure and expression of ER derivatives. A, the functional domains (A/B, C, D, E, F) and activation functions (AF-1 and AF-2)
of ER are shown at the top along with schematics for the A/B domain mutants studied in this report. The values to the right of the receptor
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that another full estrogen, the resorcylic lactone P1496 (31),
showed a pattern of activity identical to that observed with E,.
Like E,, transcriptional response to P1496 was fully retained
in N21, E41, and A87 receptors, but was impaired with the
deletion of the first 108 residues (Fig. 3A). Similar results to
those seen with TOT were observed with the antiestrogen
compounds BF and BT (32). Like TOT, these heterocycle-based
antiestrogens were significant agonists, evoking transcrip-
tional activity that was similar in magnitude to that obtained
with TOT (~30% of E, stimulation). As seen in Fig. 3A, anti-
estrogen stimulation of CAT activity was lost with the mutants
A87 and A41-64 for the three antiestrogen compounds (TOT,
BF, and BT), while estrogen (E, and P1496) stimulation of
transcriptional activity was still maintained maximally in
these two constructs. No stimulation of wild type ER or any ER
mutants was seen with the pure antiestrogen ICI 164,384 (data
not shown).

These A/B domain mutants were also tested in a different
cell background utilizing an ER-negative human endometrial
cancer cell line (HEC-1 cells). In these cells, wild type ER also
responds to TOT as an agonist, showing about 30-40% of wild
type E, response (Fig. 8B). Similar results to those seen previ-
ously in MDA-231 breast cancer cells were observed with the
A/B domain deletion mutants in these endometrial cancer cells;
both A87 and A41-64 receptors retained full wild type tran-
scriptional activity in response to E, but did not exhibit any
response to TOT. These results demonstrate again that a re-
gion between amino acids 40 and 65 is critical for TOT agonism
yet is not required for E,-dependent transcription.

Specific Regions in the A/B Domain Are Required to Support
TOT Agonism—Since TOT was not a full estrogen agonist in
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these assays, and is known to show mixed estrogen agonist and
antagonist activity in many cells (15-18), we also examined the
antagonist activity of TOT and how this was impacted by
changes in the A/B domain of ER (Fig. 4). TOT agonism was
apparent in wild type ER, N21, and E41 receptors and, in these
three receptors, TOT (at a 10-fold excess concentration relative
to that of E,) was also able to suppress Ey-stimulated activity
to that of its own inherent level of agonism (i.e. approximately
30% of the E,-stimulated level). Thus, with these receptors,
this compound showed partial agonist and partial antagonist
activity. Of interest, in the A87, M109, and A41-64 receptors
where TOT showed no agonistic activity, TOT behaved as a
pure antiestrogen and was now a complete antagonist of the E,
stimulation. Thus, the agonist/antagonist character of the an-
tiestrogen TOT differed with the nature of the ER A/B domain.

Deletions in the A/B Domain Do Not Affect Receptor Level or
DNA Binding — Since certain A/B deletion mutants exhibited a
differential response to estrogens and antiestrogens, the levels
of these receptors and the DNA binding abilities of these mu-
tant ERs were determined following exposure to E; or TOT in
order to determine whether differences in response to these two
ligands might be attributable to ligand-induced alteration in
receptor stability or DNA binding ability. As seen in Fig. 54,
levels of wild type ER, A41-64 ER and A87 ER were similar
following cell treatment with E, or TOT. Thus, differential
turnover of these receptor proteins in response to TOT versus
E, is not likely to explain the very different transcriptional
response of these receptors to these two ligands.

DNA binding studies were conducted with several of the
mutants by use of a promoter interference assay, in order to
assess whether differences in DNA binding of the TOT-ER

schematics indicate the transcriptional activity of the receptors in response to 1078 M E, or 10”7 M TOT and summarize data that are derived from
dose response experiments detailed later in this paper. B, the expression of wild type and mutant estrogen receptors from cytomegalovirus
promoter-containing expression vectors was determined following transfection into ER-negative COS-1 cells. Equal amounts of protein were used
and immunoblotting was done with the anti-ER monoclonal antibody H222.
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Fic. 3. Transcriptional activation by wild type ER and A/B
domain deletion ER mutants in response to two estrogens and
three antiestrogens. A, MDA-231 breast cancer cells were transfected
with ER expression vectors and a (ERE);-pS2-CAT reporter gene. Cells
were treated for 24 h with either 1078 M E,, 1077 M P1496, 10~7 M TOT,
10~7 M BF, or 10~ m BT as indicated. B, ER-negative HEC-1 human
endometrial cancer cells were transfected with ER expression vectors
and a (ERE),-pS2-CAT reporter gene and treated with either 10 M E,
or 1077 M TOT. CAT activity was determined as described in the legend
to Fig. 2. Values are the mean * S.E. for three or more determinations
from separate experiments. Some error bars are too small to be visible.

versus E5ER complexes might explain their different tran-
scriptional efficacy (Fig. 5B). This promoter interference assay
measures the ability of ER to bind to ERE DNA in intact cells
(23). Binding of ER to the ERE is assayed by assessing the
ability of ERE-bound ER to block transcription from the con-
stitutively active cytomegalovirus (CMV) promoter, with the
repression of CAT activity being a measure of the binding of ER
to the ERE-containing promoter. A87, which responds to E, but
not to TOT, and M109, which is impaired in both E,- and
TOT-dependent activity, were both able to bind to the EREs
and to interfere with promoter activity to the same extent as
the wild type ER (Fig. 5B). Therefore, differences in E,- and
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FiG. 4. The antiestrogen TOT is an estrogen agonist and an-
tagonist, with its agonist/antagonist balance dependent on the
particular ER protein. ER-negative MDA-231 cells were transfected
with expression vector for wild type or A/B domain ER mutants and a
(ERE),-pS2-CAT reporter gene. Cells were treated for 24 h with 1078 M
E, or 1077 M TOT alone or in combination (10~® M E, and 10~7 M TOT).
CAT activity was analyzed as described in the legend to Fig. 2. Values
are the mean = S.E. for three or more determinations from separate
experiments. Some error bars are too small to be visible.

TOT-dependent transactivation exhibited by these ER deriva-
tives do not appear to be caused by differences in receptor
protein level or by differential DNA binding.

Residues 41-109 Encompass Sequences Important for Both
Estradiol- and TOT-dependent Transcription—Additional
analysis of the A/B region was made to further characterize
sequences important for E,- and TOT-dependent transcription.
Since transcriptional response to E, was almost completely lost
in going from the A87 to the M109 ER, we wished to directly
assess the importance of amino acids 87-108 in E,-dependent
activity. To do so, we tested an ER mutant lacking only amino
acids 87-108 (A87-108). Full dose-response studies employing
1072t0 107" m E; and 107! to 1078 M TOT were conducted for
this mutant and all other mutants described below, as done for
the mutant ERs shown in Fig. 2. The dose-response curves are
not shown, but the findings at 107® M E, and 10~7 M TOT are
summarized in Fig. 1A. Deletion of residues 87-108 resulted in
only a ~30% decrease in E,-stimulated transcriptional activity
(Fig. 1A, entry 7). From these results, it appears that E,-de-
pendent transcription is supported by sequences outside of the
87-108 region of the A/B domain, as deletion of only these
amino acids is not sufficient to reduce the transcriptional ac-
tivity to the level observed with M109.

Further analysis of the A/B region was made using segment
ligated mutants (Fig. 14, entries 8—10). To examine the region
between residues 40 and 65, which were required for TOT
agonism, we constructed a segment ligated ER derivative, 41—
66-CDEF, containing only amino acids 41-66 of the A/B do-
main linked directly to the intact ER domains C through F and
assayed this receptor for its ability to transactivate an ERE-
containing reporter gene in the presence of E, or TOT. This
mutant was surprising in its ability to activate the reporter
gene to approximately 40% of the wild type ER in response to
E, (Fig. 14, entry 8), even though deletion of amino acids 41-64
resulted in no change in E,-stimulated activity. The ER mutant
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Fic. 5. Protein levels and DNA-binding abilities of wild type
ER and ER mutants treated with estrogen or antiestrogen. 4,
levels of wild type ER and ER mutants were examined following trans-
fection and treatment of COS-1 cells with either 107®* M E, or 107" M
TOT for 24 h. Immunoblotting was done with the anti-ER monoclonal
antibody H222. B, MDA-231 cells were transfected with the constitu-
tively active CMV-(ERE),-CAT promoter interference plasmid and wild
type ER or mutant ERs. Cells were treated with control vehicle, 1078 M
E,, or 1077 M TOT, and CAT activity was analyzed as described in the
legend to Fig. 2. Values are the mean + S.E. for three or more deter-
minations from separate experiments. For some values, error bars are
too small to be visible.

41-66-CDEF, however, exhibited no measurable response to
TOT. This suggests that residues 41-64 are necessary for TOT
agonism, but that they alone are not sufficient for TOT-directed
transcription. Extension of the A/B domain toward the COOH
terminus (Fig. 14, entry 9) to include amino acids 41-87 (41~
87-CDEF) did not result in any increase in E,- or TOT-depend-
ent transcription compared with 41-66-CDEF. However, ex-
tension to amino acid 109 (41-109-CDEF) did result in a 2-fold
increase in E,-dependent transcriptional activity compared
with 41-66-CDEF and a dramatic increase in TOT agonism
such that the activity measured was approximately 80% of wild
type ER activity for both E, and TOT (Fig. 1A, entry 10). This
indicates that the region encompassing residues 41-109 con-
tains almost all of the A/B domain sequence needed both for E,
and TOT stimulatory activity.

Interestingly, the transcriptional activity of 80% observed
with 41-109-CDEF is in agreement with the observation that
only 20% of wild type Ey-stimulated activity is retained upon
deletion of the first 108 residues. These results suggest that
residues 87-108 play a significant role in E,-stimulated tran-
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scriptional activity but are supported by other sequences in the
A/B domain. This is highlighted by the A87-108 mutant (Fig.
1A, entry 7), which lacks residues 87-108 in the A/B domain.
This mutant is only weakly impaired in response to E, and
TOT compared with wild type ER, consistent with residues
41-109 being important for full AF-1 function. Together, these
results demonstrate that E,- and TOT-dependent transcription
utilizes other flanking sequences beyond amino acids 87-108
within the A/B domain to achieve full receptor activity. These
required regions could serve as a portion of the activation
function or could serve a structural purpose, perhaps maintain-
ing proper three-dimensional structure of the receptor protein.

DISCUSSION

The human estrogen receptor contains two transcriptional
activation functions, AF-1 located in the A/B domain and AF-2
in the hormone-binding domain. Both transcriptional activa-
tion functions act in a promoter- and cell type-dependent man-
ner. The amino acid sequences of these activation functions are
not similar to other known activation sequences, so elucidation
of their precise mechanism of action is of interest. Our studies
have defined AF-1 regions within the A/B domain of ER that
support the transcriptional response to estrogens (Ey, P1496)
and those that support the transcriptional response to several
antiestrogens. While considerable overlap in the transcription-
supporting regions is observed for both categories of ligands,
we found that there are some distinct sequence requirements.

There are limitations in the applications of mutational meth-
ods to precisely define regions of the A/B domain that support
the transcriptional agonism of these different ligands, as these
activities appear to be distributed over more than one discrete
segment. To address these issues we have, in fact, made three
different types of alterations in the A/B domain, namely pro-
gressive NH,-terminal deletions, segmental deletions, and seg-
mental ligations. In many cases, we obtained consistent results
regarding the transcription-supporting role of a particular re-
gion of the A/B domain by making the different types of muta-
tions; however, we did not always get identical results using all
three approaches.

When making progressive NH,-terminal deletions, TOT ago-
nism is lost when the A/B domain is truncated from E41 to A87,
whereas the effect of E, is reduced only upon further deletion to
M109. Therefore, TOT agonism appears to require a region
between residues 41-86, whereas E, induction requires the
87-108 sequence. Segmental deletion of residues 41-64 does,
in fact, eliminate TOT agonism without affecting E, induction.
However, the 87-108 segmental deletion, which has a limited
effect on TOT agonism, causes only a modest reduction in E,
induced transcription. Thus, whereas the region 87-108 ap-
pears to be critical to the E, effect in the absence of residues
1-86 (i.e. by progressive NH,-terminal deletion), it appears
that much of the E, effect can be supported by the 1-86 seg-
ment (perhaps together with the 109-180 segment) that is still
present in the A87-108 segment-deleted mutant. The segment
ligation approach confirms the importance of the 41-109 re-
gion, as this segment alone restores most of the agonistic effect
of TOT and gives nearly full induction with E,. It is clear from
our findings that distinctly different regions of the A/B domain
are responsible for supporting the transcriptional activation
induced by E, and the agonism effected by TOT and that in
certain situations these regions may act in concert with other
A/B segments.

Metzger et al. (21) analyzed the role of A/B sequences in
chicken embryo fibroblast (CEF) and yeast cells in which AF-1
is able on its own to stimulate transactivation. They observed
in CEF cells that deletion of the first ~60 or 80 residues
resulted in a decrease in E,-stimulated transcription of 40 and
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70%, respectively. In our studies in 231 human breast cancer
and HEC-1 human endometrial cancer cells, deletion of the
first 40 amino acids, had no effect on transcriptional activity,
while deletion of the first 108 amino acids nearly completely
eliminated transcriptional response to E,. Response to E, was
fully retained in our A87 mutant, yet this mutant lost its ability
to respond to TOT. In this and some other A/B domain mutants,
we observed considerable differences in the ability of TOT
versus E, to stimulate transcription, whereas in the several
mutants analyzed for response to E, and TOT in CEF cells,
which contained deletions of only certain NH,- or COOH-ter-
minal portions of the A/B domain, differences between E, and
TOT were not seen. The differences in our findings and those of
Metzger et al. (21) may reflect differences in the cell types and
promoters studied, but may also reflect the fact that deletions
in only the central portion of the A/B domain were not studied
by Metzger et al. (21).

Tamoxifen is well known to show cell- and gene-specific
agonism, being a relatively pure estrogen antagonist in some
cells, and a partial agonist/antagonist or a relatively strong
agonist in others (5, 22). Our current findings suggest that
cellular processes that impinge on the specific A/B domain
sequences we have identified should be key determinants of
whether ligands such as tamoxifen will function as agonists,
antagonists, or partial agonists/antagonists in any specific cell
system. In a recent study, we have shown that the binding of
both estrogens and antiestrogens to ER promotes an interac-
tion between AF-1 in the A/B domain and AF-2 in domain E
(27). This AF-1/AF-2 interaction appears to be an essential
prerequisite for the competence of ER-ligand complexes fo in-
duce transcription. It is known that there are conformational
differences in ER-estrogen and ER-antiestrogen complexes (24,
25, 38), which are presumed to occur in the ligand binding AF-2
region. Since the interaction of AF-2 with AF-1 is required for
optimal transcriptional activity in the cell contexts we have
examined, it is not surprising that distinctly different se-
quences within AF-1 are involved in supporting the transcrip-
tion activation induced by these different ligand classes.

The mechanisms by which ligand-induced AF-1/AF-2 inter-
action occurs or by which ER-ligand complexes are able to elicit
gene transcription are not well understood. These activation
functions have been shown to have squelching effects on their
own activity and on acidic activators (9). This transcriptional
interference provides evidence that AF-1 and AF-2 interact
with a titratable cellular factor(s) indispensable for different
classes of activation functions (8, 9). A number of activation
function-interacting proteins may be involved in these proc-
esses (Ref. 22 and references therein) and may account, as well,
for the varying levels of agonism that TOT displays in different
cells and on different promoters. For example, in systems in
which TOT has agonist activity, a co-regulator or transcription
factor that interacts specifically with the 41-64 region of AF-1
in the ER-TOT complex may support transcription, whereas
systems in which TOT is a pure antagonist may lack this factor.
E,-induced transcription, which operates via somewhat differ-
ent AF-1 sequences, may not utilize this factor or may utilize
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other factors. Our identification of differences in the sequences
within ER that are required for TOT versus estradiol agonism
should aid in elucidating the underlying mechanisms regulat-
ing the cell-specific pharmacology and biocharacter of
antiestrogens.
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